scispace - formally typeset
Journal ArticleDOI

Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis

Reads0
Chats0
TLDR
This paper aims to inspire readers to search for further new applications for this material in catalysis and in other fields by describing the methods used for synthesizing this material with different textural structures and surface morphologies.
Abstract
Graphitic carbon nitride, g-C3N4, is a polymeric material consisting of C, N, and some impurity H, connected via tris-triazine-based patterns. Compared with the majority of carbon materials, it has electron-rich properties, basic surface functionalities and H-bonding motifs due to the presence of N and H atoms. It is thus regarded as a potential candidate to complement carbon in material applications. In this review, a brief introduction to g-C3N4 is given, the methods used for synthesizing this material with different textural structures and surface morphologies are described, and its physicochemical properties are referred. In addition, four aspects of the applications of g-C3N4 in catalysis are discussed: (1) as a base metal-free catalyst for NO decomposition, (2) as a reference material in differentiating oxygen activation sites for oxidation reactions over supported catalysts, (3) as a functional material to synthesize nanosized metal particles, and (4) as a metal-free catalyst for photocatalysis. Th...

read more

Citations
More filters
Journal ArticleDOI

Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Journal ArticleDOI

A review on g-C3N4-based photocatalysts

TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Journal ArticleDOI

Emerging Two-Dimensional Nanomaterials for Electrocatalysis

TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Journal ArticleDOI

Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis.

TL;DR: The methods to modify the electronic structure, nanostructure, crystal structure, and heterostructure of g-C3 N4, together with correlations between its structure and performance are illustrated.
Journal ArticleDOI

Doping of graphitic carbon nitride for photocatalysis: A reveiw

TL;DR: In this article, a review summarizes the recent progress in the development of efficient and low cost doped graphitic carbon nitride (g-C3N4) systems in various realms such as photocatalytic hydrogen evolution, reduction of carbon dioxide, and removal of contaminants in wastewater and gas phase.
References
More filters
Journal ArticleDOI

Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Journal ArticleDOI

Semiconductor Clusters, Nanocrystals, and Quantum Dots

TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Powering the planet: Chemical challenges in solar energy utilization

TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Journal ArticleDOI

Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities

TL;DR: In this article, a top-down thermal oxidation etching of bulk g-C3N4 in air has been shown to improve the photocatalytic activities of the material in terms of OH radical generation and hydrogen evolution.
Related Papers (5)