scispace - formally typeset
Open AccessBook

Handbook of fuel cells : fundamentals technology and applications

TLDR
In this article, the authors present a survey of fuel cell technologies and applications, focusing on hydrogen storage, hydrogen generation, and other energy conversion related topics, as well as their applications.
Abstract
VOLUME 1: FUNDAMENTALS AND SURVEY OF SYSTEMS. Contributors to Volume 1. Foreword. Preface. Abbreviations and Acronyms. Part 1: Thermodynamics and kinetics of fuel cell reactions. Part 2: Mass transfer in fuel cells. Part 3: Heat transfer in fuel cells. Part 4: Fuel cell principles, systems and applications. Contents for Volumes 2, 3 and 4. Subject Index. VOLUME 2: ELECTROCATALYSIS. Contributors to Volume 2. Foreword. Preface. Abbreviations and Acronyms. Part 1: Introduction. Part 2: Theory of electrocatalysis. Part 3: Methods in electrocatalysis. Part 4: The hydrogen oxidation/evolution reaction. Part 5: The oxygen reduction/evolution reaction. Part 6: Oxidation of small organic molecules. Part 7: Other energy conversion related topics. Contents for Volumes 1, 3 and 4. Subject Index. VOLUME 3: FUEL CELL TECHNOLOGY AND APPLICATIONS: PART 1. Contributors to Volumes 3 and 4. Foreword. Preface. Abbreviations and Acronyms. Part 1: Sustainable energy supply. Part 2: Hydrogen storage and hydrogen generation. Development prospects for hydrogen storage. Chemical hydrogen storage devices. Reforming of methanol and fuel processor development. Fuel processing from hydrocarbons to hydrogen. Well-to-wheel efficiencies. Hydrogen safety, codes and standards. Part 3: Polymer electrolyte membrane fuel cell systems (PEMFC). Bipolar plate materials and flow field design. Membrane materials. Electro-catalysts. Membrane-electrode-assembly (MEA). State-of-the-art performance and durability. VOLUME 4: FUEL CELL TECHNOLOGY AND APPLICATIONS, PART 2. Contributors to Volume 3 and 4. Foreword. Preface. Abbreviations and Acronyms. Part 3: Polymer electrolyte membrane fuel cells and systems (PEMFC) (Continued from previous volume). System design and system-specific aspects. Air-supply components. Applications based on PEM-technology. Part 4: Alkaline fuel cells and systems (AFC). Part 5: Phosphoric acid fuel cells and systems (PAFC). Part 6: Direct methanol fuel cells and systems (DMFC). Part 7: Molten carbonate fuel cells and systems (MCFC). Part 8: Solid oxide fuel cells and systems (SOFC). Materials. Stack and system design. New concepts. Part 9: Primary and secondary metal/air cells. Part 10: Portable fuel cell systems. Part 11: Current fuel cell propulsion systems. PEM fuel cell systems for cars/buses. PEM fuel cell systems for submarines. AFC fuel cell systems. Part 12: Electric utility fuel cell systems. Part 13: Future prospects of fuel cell systems. Contents for Volumes 1 and 2. Subject Index.

read more

Citations
More filters
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Journal ArticleDOI

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Journal ArticleDOI

Electrocatalyst approaches and challenges for automotive fuel cells

Mark K. Debe
- 07 Jun 2012 - 
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Journal ArticleDOI

Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs

TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Journal ArticleDOI

State of Understanding of Nafion

TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Related Papers (5)