scispace - formally typeset
Journal ArticleDOI

How to model the behaviour of organic photovoltaic cells

TLDR
In this article, the optimization of various parameters which govern the behavior of polymer-based and organic photovoltaic cells is discussed, and deviations from optimal values and their effects on the current-voltage characteristics are discussed.
Abstract
In this paper we discuss the optimization of various parameters which govern the behaviour of polymer based and organic photovoltaic cells. General mechanisms leading to the generation of charge carriers and the related loss factors are detailed. Theoretical electrical parameters for bilayer and interpenetrating networks of donors and acceptors (open circuit voltages) are established along with current versus voltage characteristics. An equivalent circuit to a solar cell, considering the effects of shunt resistance across the whole layer, is elaborated. After modelling optical interference and its effects on the photocurrent spectrum, orders of magnitude of the required parameters are established for an efficient solar cell. Deviations from optimal values and their effects on the current–voltage characteristics are discussed. Ageing and degradation effects, and calculations demonstrating the necessary photophysical requirements to achieve long-term stable devices are presented. Copyright © 2006 Society of Chemical Industry

read more

Citations
More filters
Journal ArticleDOI

Stability/degradation of polymer solar cells

TL;DR: In this article, the current understanding of stability/degradation in organic and polymer solar cell devices is presented and the methods for studying and elucidating degradation are discussed Methods for enhancing the stability through the choice of better active materials, encapsulation, application of getter materials and UV-filters are also discussed
Journal ArticleDOI

Rational Design of High Performance Conjugated Polymers for Organic Solar Cells

TL;DR: The research community has made great progress in the field of bulk heterojunction (BHJ) polymer solar cells since its inception in 1995 as mentioned in this paper and the power conversion efficiency (PCE) has increased from 1% in the 1990s to over 8% just recently.
PatentDOI

P-type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

TL;DR: In this paper, the authors present a solar cell consisting of an anode, a p-type semiconductor layer formed on the anode and an active organic layer consisting of electron-donating organic material and an electron-accepting organic material.
Journal ArticleDOI

Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties.

TL;DR: It was found that perfluorination of the polymer backbone resulted in poor photochemical stability against singlet oxygen attack and poor solar energy conversion efficiency, and the polymer containing mono-fluorinated thienothiophene gave the best solar cell performance.
Journal ArticleDOI

Solar cells utilizing small molecular weight organic semiconductors

TL;DR: In this article, the physical processes that lead to photocurrent generation in organic solar cells, as well as the various architectures employed to optimize device performance are discussed, including donor-acceptor heterojunction for efficient exciton dissociation, the exciton blocking layer, the mixed or bulk heterjunction, and the stacked or tandem cell.
References
More filters
Journal ArticleDOI

Efficient photodiodes from interpenetrating polymer networks

TL;DR: In this paper, the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers is shown to provide both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes.
Journal ArticleDOI

Small molecular weight organic thin-film photodetectors and solar cells

TL;DR: In this paper, the double heterojunction was proposed to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved, and a full optical and electrical analysis of the double-heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials.
Journal ArticleDOI

Origin of the Open Circuit Voltage of Plastic Solar Cells

TL;DR: A series of highly soluble fullerene derivatives with varying acceptor strengths (i.e., first reduction potentials) was synthesized and used as electron acceptors in plastic solar cells as discussed by the authors.
Journal ArticleDOI

Modeling photocurrent action spectra of photovoltaic devices based on organic thin films

TL;DR: In this article, the authors modeled experimental short-circuit photocurrent action spectra of poly(3-(4′-(1″,4″,7″-trioxaoctyl)phenyl)thiophene) (PEOPT)/fullerene (C60) thin film heterojunction photovoltaic devices.
Related Papers (5)