scispace - formally typeset
Open AccessJournal Article

In2O3 Nanowires as Chemical Sensors

Reads0
Chats0
TLDR
In this paper, an approach to use individual In2O3 nanowire transistors as chemical sensors working at room temperature was presented, which exhibited significantly improved chemical sensing performance compared to existing solid state sensors in many aspects, such as the sensitivity, the selectivity, the response time, and the lowest detectable concentrations.
Abstract
We present an approach to use individual In2O3 nanowire transistors as chemical sensors working at room temperature. Upon exposure to a small amount of NO2 or NH3, the nanowire transistors showed a decrease in conductance up to six or five orders of magnitude and also substantial shifts in the threshold gate voltage. These devices exhibited significantly improved chemical sensing performance compared to existing solid-state sensors in many aspects, such as the sensitivity, the selectivity, the response time, and the lowest detectable concentrations. Furthermore, the recovery time of our devices can be shortened to just 30 s by illuminating the devices with UV light in vacuum.

read more

Citations
More filters
Journal ArticleDOI

Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors

TL;DR: In this paper, ZnO nanowires gas sensors were fabricated with microelectromechanical system technology and ethanol-sensing characteristics were investigated, and the sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 300°C.
Journal ArticleDOI

Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview

TL;DR: In this article, high performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O3 were reviewed.
Journal ArticleDOI

Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed

TL;DR: The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrate, vertebrates, and finally to mammals, but over the centuries it had only been known for its toxicity and environmental hazard.
Journal ArticleDOI

Semiconductor nanowires and nanotubes

TL;DR: In this article, a review highlights the recent advances in the field, using work from this laboratory for illustration, and the understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks.
Journal ArticleDOI

Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures

TL;DR: In this paper, the active nanowire sensor element in such devices can be configured either as resistors whose conductance is altered by charge transfer processes occurring at their surfaces or as field effect transistors whose properties can be controlled by applying an appropriate potential onto its gate.
References
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts

TL;DR: In this article, a single-crystalline SnO2 nanobelts were fabricated using the integrity of a single nanobelt with a sensitivity at the level of a few ppb.
Journal ArticleDOI

Modulated Chemical Doping of Individual Carbon Nanotubes

TL;DR: Modulation doping of a semiconducting single-walled carbon nanotube along its length leads to an intramolecular wire electronic device that can be tuned into n-type, exhibiting single-electron charging and negative differential conductance at low temperatures.
Related Papers (5)