scispace - formally typeset
Journal ArticleDOI

Isostructural metal-insulator transition in VO2

TLDR
An isostructural, purely electronically driven metal-insulator transition is demonstrated in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide, to provide insights into phase transitions of correlated materials and may aid the design of device functionalities.
Abstract
The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method

TL;DR: In this paper, a generalization of the Local Density Approximation (LDA) method for the systems with strong Coulomb correlations is presented which gives a correct description of the Mott insulators.
Journal ArticleDOI

A comprehensive review on emerging artificial neuromorphic devices

TL;DR: A comprehensive review on emerging artificial neuromorphic devices and their applications is offered, showing that anion/cation migration-based memristive devices, phase change, and spintronic synapses have been quite mature and possess excellent stability as a memory device, yet they still suffer from challenges in weight updating linearity and symmetry.
Journal ArticleDOI

Challenges and Opportunities toward Real Application of VO2-Based Smart Glazing

TL;DR: There are several novel but necessary challenges of VO2-based smart glazing for real-world applications, including color modulation, multistate modulation, skin-comfort design, flexible fabrication, improved stability, and environmental friendliness.
Journal ArticleDOI

Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities

TL;DR: In this paper, the authors provide an overview on recent progress in tuning the functional properties of complex transition-metal oxides via defect engineering, including types of defects and their effects on local atomic structure, electron configurations and electronic structure.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Journal ArticleDOI

Self-interaction correction to density-functional approximations for many-electron systems

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.
Related Papers (5)