scispace - formally typeset
Journal ArticleDOI

Langevin-dynamics study of the dynamical properties of small magnetic particles

J. L. García-Palacios, +1 more
- 01 Dec 1998 - 
- Vol. 58, Iss: 22, pp 14937-14958
TLDR
In this paper, the Langevin-dynamics approach was used to study the dynamics of magnetic nanoparticles, and the results were compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy.
Abstract
The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically solved (properly observing the customary interpretation of it as a Stratonovich stochastic differential equation), in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a number of heuristic expressions for the linear dynamic susceptibility, only the simple formula proposed by Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numerical results with the asymptotic formula of Storonkin {Sov. Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]}, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but their dramatic influence on the phase shifts. Comparison of the numerical results with the exact zero-damping expression for the transverse susceptibility by Garanin, Ishchenko, and Panina {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fiz. 82, 242 (1990)]}, reveals a sizable contribution of the spread of the precession frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high temperatures.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Fundamentals and applications of the Landau–Lifshitz–Bloch equation

TL;DR: The influence of thermal excitations on magnetic materials is a topic of increasing relevance in the theory of magnetism as mentioned in this paper, which can be considered as an extension of already established micromagnetic methods with a comparable numerical effort.
Journal ArticleDOI

Magnetization switching in nanowires: Monte Carlo study with fast Fourier transformation for dipolar fields

TL;DR: In this article, the long-range dipole-dipole interaction is calculated with the aid of fast Fourier transformation, based on time quantified Monte Carlo (QMC) methods.
Journal ArticleDOI

Thermal effects in domain wall motion: Micromagnetic simulations and analytical model

TL;DR: In this article, the effect of thermal fluctuations in domain wall motion driven by either an external field or an in-plane spin-polarized current in ferromagnetic nanowires of rectangular cross section was studied.
Journal ArticleDOI

Analytical Macrospin Modeling of the Stochastic Switching Time of Spin-Transfer Torque Devices

TL;DR: An analytical model for the stochastic switching delay of a current-driven MTJ, with in-plane magnetization, that agrees with physical simulations, from low- to high-current regimes through intermediate regime is proposed.
Journal ArticleDOI

Hybrid sensors based on colour centres in diamond and piezoactive layers

TL;DR: A hybrid device composed of thin film layers of diamond with colour centres and piezoactive elements for the transduction and measurement of physical signals and offers novel possibilities for engineering strong coherent couplings between nanomechanical oscillator and solid state spin qubits.
References
More filters
Book

Stochastic processes in physics and chemistry

TL;DR: In this article, the authors introduce the Fokker-planck equation, the Langevin approach, and the diffusion type of the master equation, as well as the statistics of jump events.

Stochastic Processes in Physics and Chemistry

Abstract: Preface to the first edition. Preface to the second edition. Abbreviated references. I. Stochastic variables. II. Random events. III. Stochastic processes. IV. Markov processes. V. The master equation. VI. One-step processes. VII. Chemical reactions. VIII. The Fokker-Planck equation. IX. The Langevin approach. X. The expansion of the master equation. XI. The diffusion type. XII. First-passage problems. XIII. Unstable systems. XIV. Fluctuations in continuous systems. XV. The statistics of jump events. XVI. Stochastic differential equations. XVII. Stochastic behavior of quantum systems.
Book

Numerical Solution of Stochastic Differential Equations

TL;DR: In this article, a time-discrete approximation of deterministic Differential Equations is proposed for the stochastic calculus, based on Strong Taylor Expansions and Strong Taylor Approximations.
Book

The Fokker-Planck equation

Hannes Risken