scispace - formally typeset
Journal ArticleDOI

Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications.

TLDR
It is demonstrated that these all-MWNT thin films have randomly oriented interpenetrating network structure with well developed nanopores using AFM and SEM, which is an ideal structure of functional materials for various applications.
Abstract
All multiwall carbon nanotube (MWNT) thin films are created by layer-by-layer (LBL) assembly of surface functionalized MWNTs. Negatively and positively charged MWNTs were prepared by surface functionalization, allowing the incorporation of MWNTs into highly tunable thin films via the LBL technique. The pH dependent surface charge on the MWNTs gives this system the unique characteristics of LBL assembly of weak polyelectrolytes, controlling thickness and morphology with assembly pH conditions. We demonstrate that these MWNT thin films have randomly oriented interpenetrating network structure with well developed nanopores using AFM and SEM, which is an ideal structure of functional materials for various applications. In particular, electrochemical measurements of these all-MWNT thin film electrodes show high electronic conductivity in comparison with polymer composites with single wall nanotubes, and high capacitive behavior with precise control of capacity.

read more

Citations
More filters
Journal ArticleDOI

Graphene-based supercapacitor with an ultrahigh energy density

TL;DR: The key to success was the ability to make full utilization of the highest intrinsic surface capacitance and specific surface area of single-layer graphene by preparing curved graphene sheets that will not restack face-to-face.
Journal ArticleDOI

Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

TL;DR: It is shown that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO (2) (~1,145 F g(-1)) that is close to the theoretical value.
Journal ArticleDOI

Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities

TL;DR: In this paper, the authors reviewed several key issues for improving the energy densities of supercapacitors and some mutual relationships among various effecting parameters, and challenges and perspectives in this exciting field are discussed.
Journal ArticleDOI

Heteroatom-doped graphene materials: syntheses, properties and applications

TL;DR: The distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants are emphasized, hoping to assist a better understanding of doped graphene materials.
References
More filters
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites

TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Journal ArticleDOI

Carbon materials for the electrochemical storage of energy in capacitors

TL;DR: In this article, different types of capacitors with a pure electrostatic attraction and/or pseudocapacitance effects are presented, and their performance in various electrolytes is studied taking into account the different range of operating voltage (1V for aqueous and 3 V for aprotic solutions).
Journal ArticleDOI

Transparent, Conductive Carbon Nanotube Films

TL;DR: Characteristics of the fabrication of ultrathin, transparent, optically homogeneous, electrically conducting films of pure single-walled carbon nanotubes indicate broad applicability of the films for electrical coupling in photonic devices.