scispace - formally typeset
Journal ArticleDOI

Macromolecular design via réversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization

Sébastien Perrier, +1 more
- 15 Nov 2005 - 
- Vol. 43, Iss: 22, pp 5347-5393
TLDR
A review of the progress made in reversible addition-fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerization can be found in this article.
Abstract
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl-thio compounds used as chain-transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005

read more

Citations
More filters
Journal ArticleDOI

Controlled/living radical polymerization: Features, developments, and perspectives

TL;DR: In this article, a review of recent mechanistic developments in the field of controlled/living radical polymerization (CRP) is presented, with particular emphasis on structure-reactivity correlations and "rules" for catalyst selection in ATRP, for chain transfer agent selection in reversible addition-fragmentation chain transfer (RAFT) polymerization, and for the selection of an appropriate mediating agent in stable free radical polymerisation (SFRP), including organic and transition metal persistent radicals.
Journal ArticleDOI

Living Radical Polymerization by the RAFT Process - A Second Update

TL;DR: The authors provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005.
Journal ArticleDOI

Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications

TL;DR: This data indicates that self-Assembled Monolayers and Walled Carbon Nanotubes with high adhesion to Nitroxide-Mediated Polymerization have potential in the well-Defined Polymer Age.
Journal ArticleDOI

The development of microgels/nanogels for drug delivery applications

TL;DR: This review describes the recent developments of microgel/nanogel particles as drug delivery carriers for biological and biomedical applications, including stability for prolonged circulation in the blood stream, novel functionality for further bioconjugation, and biodegradability for sustained release of drugs for a desired period of time.
Journal ArticleDOI

Radical addition-fragmentation chemistry in polymer synthesis

TL;DR: In this paper, a review of the development of addition-fragmentation chain transfer agents and related ring-opening monomers highlighting recent innovation in these areas is presented, including dithioesters, trithiocarbonates, dithioco-baramates and xanthates.
References
More filters
Journal ArticleDOI

Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process

TL;DR: The authors proposed a reversible additive-fragmentation chain transfer (RAFT) method for living free-radical polymerization, which can be used with a wide range of monomers and reaction conditions and in each case it provides controlled molecular weight polymers with very narrow polydispersities.
Related Papers (5)