scispace - formally typeset
Journal ArticleDOI

Massive MIMO: An Introduction

Thomas L. Marzetta
- 20 Mar 2015 - 
- Vol. 20, Iss: 20, pp 11-22
TLDR
Massive MIMO is a brand new technology that has yet to be reduced to practice, but its principles of operation are well understood, and surprisingly simple to elucidate.
Abstract
Demand for wireless throughput, both mobile and fixed, will always increase. One can anticipate that, in five or ten years, millions of augmented reality users in a large city will want to transmit and receive 3D personal high-definition video more or less continuously, say 100 megabits per second per user in each direction. Massive MIMO-also called Large-Scale Antenna Systems-is a promising candidate technology for meeting this demand. Fifty-fold or greater spectral efficiency improvements over fourth generation (4G) technology are frequently mentioned. A multiplicity of physically small, individually controlled antennas performs aggressive multiplexing/demultiplexing for all active users, utilizing directly measured channel characteristics. Unlike today's Point-to-Point MIMO, by leveraging time-division duplexing (TDD), Massive MIMO is scalable to any desired degree with respect to the number of service antennas. Adding more antennas is always beneficial for increased throughput, reduced radiated power, uniformly great service everywhere in the cell, and greater simplicity in signal processing. Massive MIMO is a brand new technology that has yet to be reduced to practice. Notwithstanding, its principles of operation are well understood, and surprisingly simple to elucidate.

read more

Citations
More filters
Journal ArticleDOI

5G : A tutorial overview of standards, trials, challenges, deployment, and practice

TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Book

Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

TL;DR: This monograph summarizes many years of research insights in a clear and self-contained way and providest the reader with the necessary knowledge and mathematical toolsto carry out independent research in this area.
Journal ArticleDOI

Massive MIMO in Real Propagation Environments: Do All Antennas Contribute Equally?

TL;DR: A substantial reduction in the number of RF chains can be achieved for real massive MIMO channels, without significant performance loss, by performing antenna selection using simple algorithms.
Journal ArticleDOI

Massive MIMO Systems for 5G and Beyond Networks-Overview, Recent Trends, Challenges, and Future Research Direction.

TL;DR: This paper presents a comprehensive overview of the key enabling technologies required for 5G and 6G networks, highlighting the massive MIMO systems and discusses all the fundamental challenges related to pilot contamination, channel estimation, precoding, user scheduling, energy efficiency, and signal detection.
Journal ArticleDOI

Massive MIMO Linear Precoding: A Survey

TL;DR: It is shown that a viable precoding technique for massive MIMO systems is still unknown to date, and several research potentials that are worthy of future research efforts are suggested.
References
More filters
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Journal ArticleDOI

On Limits of Wireless Communications in a Fading Environment when UsingMultiple Antennas

TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Journal ArticleDOI

Massive MIMO for next generation wireless systems

TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Journal ArticleDOI

Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Related Papers (5)
Trending Questions (1)
What is the use of massive MIMO in daily life?

Massive MIMO can be used to meet the increasing demand for wireless throughput, such as transmitting and receiving high-definition video in augmented reality applications.