scispace - formally typeset
Journal ArticleDOI

Microstructural evolution of 6063 aluminum during friction-stir welding

TLDR
The microstructural distribution associated with a hardness profile in a friction-stir-welded, age-hardenable 6063 aluminum alloy has been characterized by transmission electron microscopy and orientation imaging microscopy as mentioned in this paper.
Abstract
The microstructural distribution associated with a hardness profile in a friction-stir-welded, age-hardenable 6063 aluminum alloy has been characterized by transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). The friction-stir process produces a softened region in the 6063 Al weld. Frictional heating and plastic flow during friction-stir welding create fine recrystallized grains in the weld zone and recovered grains in the thermomechanically affected zone. The hardness profile depends greatly on the precipitate distribution and only slightly on the grain size. The softened region is characterized by dissolution and growth of the precipitates during the welding. Simulated weld thermal cycles with different peak temperatures have shown that the precipitates are dissolved at temperatures higher than 675 K and that the density of the strengthening precipitate was reduced by thermal cycles lower than 675 K. A comparison between the thermal cycles and isothermal aging has suggested precipitation sequences in the softened region during friction-stir welding.

read more

Citations
More filters
Book

Friction Stir Welding and Processing

TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Journal ArticleDOI

Recent advances in friction-stir welding : Process, weldment structure and properties

TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.
Journal ArticleDOI

Friction stir welding of aluminium alloys

TL;DR: A comprehensive body of knowledge has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed in this article, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects.
Journal ArticleDOI

Microstructural investigation of friction stir welded 7050-T651 aluminium

TL;DR: In this paper, the grain structure, dislocation density and second phase particles in various regions including the dynamically recrystallized zone (DXZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) of a friction stir weld aluminum alloy 7050-T651 were investigated and compared with the unaffected base metal.
Journal ArticleDOI

Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds

TL;DR: In this article, the results of microstructural, mechanical property and residual stress investigations of four aluminium AA5083 friction stir welds produced under varying conditions were reported, and it was found that the weld properties were dominated by the thermal input rather than the mechanical deformation by the tool.
References
More filters
Journal ArticleDOI

Properties of friction-stir-welded 7075 T651 aluminum

TL;DR: Friction stir welding (FSW) was used to weld 7075 T651 aluminum, an alloy considered essentially unweldable by fusion processes as discussed by the authors, which exposed the alloy to a short time, high-temperature spike, while introducing extensive localized deformation.
Journal ArticleDOI

Orientation imaging: The emergence of a new microscopy

TL;DR: In this paper, a new microscopy called orientation imaging microscopy is described, which is based on precise measurements of local lattice orientation facilitated by backscattered Kikuchi diffraction.
Journal ArticleDOI

Effects of friction stir welding on microstructure of 7075 aluminum

TL;DR: In this article, the microstructural changes effected by friction stir welding of 7075 Al. were evaluated and the authors concluded that friction-stir welding has the potential to avoid significant changes in microstructure and mechanical properties.
Journal ArticleDOI

Friction stir welding for the transportation industries

W.M Thomas, +1 more
- 01 Dec 1997 - 
TL;DR: Friction stir welding (FSW) as mentioned in this paper is a continuous hot shear autogenous process involving a nonconsumable rotating probe of harder material than the substrate itself, which produces solid-phase, low distortion, good appearance welds at relatively low cost.
Journal ArticleDOI

The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy

TL;DR: The morphology and crystal structure of the metastable precipitates formed during ageing of an A1-1·2%Mg2Si alloy were studied by means of transmission electron microscopy.
Related Papers (5)