scispace - formally typeset
Journal ArticleDOI

Microsupercapacitors as miniaturized energy-storage components for on-chip electronics

TLDR
This Review discusses the progress and the prospects of integrated miniaturized supercapacitors, and discusses their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity.
Abstract
The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

read more

Citations
More filters
Journal ArticleDOI

Design and Mechanisms of Asymmetric Supercapacitors.

TL;DR: This review looks at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area and highlights several key scientific challenges.
Journal ArticleDOI

Latest advances in supercapacitors: from new electrode materials to novel device designs.

TL;DR: The state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors is summarized and key technical challenges are highlighted regarding further research in this thriving field.
Journal ArticleDOI

Towards flexible solid-state supercapacitors for smart and wearable electronics

TL;DR: The state-of-the-art advancements in FSSCs are reviewed to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs.
Journal ArticleDOI

Perspectives for electrochemical capacitors and related devices.

TL;DR: It is shown that new nanostructured electrode materials and matching electrolytes are required to maximize the amount of energy and speed of delivery, and different manufacturing methods will be needed to meet the requirements of the future generation of electronic devices.
Journal ArticleDOI

Energy storage: The future enabled by nanomaterials

TL;DR: Examples indicate that nanostructured materials and nanoarchitectured electrodes can provide solutions for designing and realizing high-energy, high-power, and long-lasting energy storage devices.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Book

Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications

TL;DR: In this paper, the double-layer and surface functionalities at Carbon were investigated and the double layer at Capacitor Electrode Interfaces: its structure and Capacitance.
Journal ArticleDOI

Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors

TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
Journal ArticleDOI

Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer

TL;DR: The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.
Journal ArticleDOI

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Related Papers (5)