scispace - formally typeset
Open AccessJournal ArticleDOI

Microwave photonics with superconducting quantum circuits

Reads0
Chats0
TLDR
In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons as mentioned in this paper, and many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed.
About
This article is published in Physics Reports.The article was published on 2017-11-30 and is currently open access. It has received 909 citations till now. The article focuses on the topics: Cavity quantum electrodynamics & Quantum optics.

read more

Citations
More filters
Journal ArticleDOI

A quantum engineer's guide to superconducting qubits

TL;DR: In this paper, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control and readout techniques.
Journal ArticleDOI

Quantum information processing with superconducting circuits: a review

TL;DR: The time is ripe for describing some of the recent development of superconducting devices, systems and applications as well as practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Journal ArticleDOI

Circuit quantum electrodynamics

TL;DR: The field of circuit quantum electrodynamics (QED) as discussed by the authors was initiated by Josephson-junction-based superconducting circuits and has become an independent and thriving field of research in its own right.
Journal ArticleDOI

A Quantum Engineer's Guide to Superconducting Qubits

TL;DR: In this article, the authors provide an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits, including qubit design, noise properties, qubit control, and readout techniques.
Journal ArticleDOI

Ultrastrong coupling between light and matter

TL;DR: A review of ultrastrong coupling between light and matter can be found in this paper, where the authors discuss entangled ground states with virtual excitations, new avenues for nonlinear optics, and connections to several important physical models.
References
More filters
Journal ArticleDOI

Reversible Switching of Ultrastrong Light-Molecule Coupling

TL;DR: In this paper, photochromic molecules enable switching from the weak-to ultrastrong-coupling regime reversibly, by using all-optical control, achieved by photochemically inducing conformational changes in the molecule.
Journal ArticleDOI

Reconstruction of non-classical cavity field states with snapshots of their decoherence

TL;DR: The complete reconstruction and pictorial representation of a variety of radiation states trapped in a cavity in which several photons survive long enough to be repeatedly measured is reported.
Journal ArticleDOI

Sub-cycle switch-on of ultrastrong light–matter interaction

TL;DR: This work uses a quantum-well waveguide structure to optically tune light–matter interaction from weak to ultrastrong and turn on maximum coupling within less than one cycle of light, and directly monitors how a coherent photon population converts to cavity polaritons during abrupt switching.
Journal ArticleDOI

The Series Product and Its Application to Quantum Feedforward and Feedback Networks

TL;DR: In this paper, the authors present simple and general algebraic methods for describing series connections in quantum networks by allowing for more general interfaces, and by introducing an efficient algebraic tool, the series product.
Related Papers (5)