scispace - formally typeset
Journal ArticleDOI

Nanoparticle Superlattice Engineering with DNA

Reads0
Chats0
TLDR
Six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale, represent an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.
Abstract
A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.

read more

Citations
More filters
Journal ArticleDOI

Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials

TL;DR: This review discusses efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions, and explores the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies.
Journal ArticleDOI

Programmable materials and the nature of the DNA bond

TL;DR: The two main approaches to creating stiff bonds, based on DNA-based materials synthesis, are reviewed, offering perhaps the most versatile way of organizing optically active materials into architectures that exhibit unusual and deliberately tailorable plasmonic and photonic properties.
Journal ArticleDOI

Colloids with valence and specific directional bonding

TL;DR: This work demonstrates a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp 3d, sp4d2 and sp3d3.
Journal ArticleDOI

Spherical Nucleic Acids

TL;DR: This Perspective details the synthetic methods for preparing spherical nucleic acid conjugates, followed by a discussion of their unique properties and theoretical and experimental models for understanding them.
Journal ArticleDOI

The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles.

TL;DR: This article analyzes the interaction of nanoparticle surface and ligands with different chemical groups, the types of bonding, the final dispersibility of ligand-coated nanoparticles in complex media, their reactivity, and their performance in biomedicine, photodetectors, photovoltaic devices, light-emitting devices, sensors, memory devices, thermoelectric applications, and catalysis.
References
More filters
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Journal ArticleDOI

A DNA-based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials

TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Journal ArticleDOI

The impact of nanoscience on heterogeneous catalysis

TL;DR: Advances in characterization methods have led to a molecular-level understanding of the relationships between nanoparticle properties and catalytic performance, and this knowledge is contributing to the design and development of new catalysts.
Journal ArticleDOI

Structural diversity in binary nanoparticle superlattices

TL;DR: It is demonstrated that electrical charges on sterically stabilized nanoparticles determine B NSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.
Related Papers (5)