scispace - formally typeset
Journal ArticleDOI

Natural convection of nano-fluids

Reads0
Chats0
TLDR
In this article, an apparently paradoxical behaviour of heat transfer deterioration was observed in nano-fluid and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated.
Abstract
Fluids with nano size solid particles suspended in them have been given the name nano-fluid which in recent studies have shown tremendous promise as heat transfer fluids. However, before suggesting such fluids for applications a thorough knowledge of physical mechanism of heat transfer in such fluids is wanted. The present study deals with one such aspect of natural convection of nano fluids inside horizontal cylinder heated from one end and cooled from the other. An apparently paradoxical behaviour of heat transfer deterioration was observed in the experimental study. Nature of this deterioration and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated. The fluid shows characters distinct from that of common slurries.

read more

Citations
More filters
Journal ArticleDOI

An Experimental Study on Buoyancy Induced Convective Heat Transfer in a Square Cavity using Multi-Walled Carbon Nanotube (MWCNT)/Water Nanofluid

TL;DR: In this paper, a square enclosure of dimensions (40 × 40 × 200) mm is used as test section and MWCNT/Water nanofluid with volume fractions 0.1%, 0.3%, 1% and 2% and Rayleigh numbers ranging from 7 × 105 to 1 × 107 are studied.
Journal ArticleDOI

Stability, rheology, and thermophysical properties of surfactant free aqueous single-walled carbon nanotubes and graphene nanoplatelets nanofluids: a comparative study

TL;DR: In this article, a comparative study of thermophysical and rheological properties of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) nanofluids was conducted.
Proceedings ArticleDOI

Numerical investigation of natural convection of nanoparticle enhanced ionic liquids (NEILs) in enclosure heated from below

TL;DR: In this paper, the numerical simulation of natural convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium bis{trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid is presented.
Journal ArticleDOI

Theoretical study of nanofluids behavior at critical Rayleigh numbers

TL;DR: In this article, the authors investigated the natural convection of nanofluids in Rayleigh-Benard problem and compared with available models in the literature to reveal discrepancies of theoretical models in prediction of the heat transfer characteristics.
References
More filters
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Conceptions for heat transfer correlation of nanofluids

TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.
Related Papers (5)