scispace - formally typeset
Journal ArticleDOI

Natural convection of nano-fluids

Reads0
Chats0
TLDR
In this article, an apparently paradoxical behaviour of heat transfer deterioration was observed in nano-fluid and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated.
Abstract
Fluids with nano size solid particles suspended in them have been given the name nano-fluid which in recent studies have shown tremendous promise as heat transfer fluids. However, before suggesting such fluids for applications a thorough knowledge of physical mechanism of heat transfer in such fluids is wanted. The present study deals with one such aspect of natural convection of nano fluids inside horizontal cylinder heated from one end and cooled from the other. An apparently paradoxical behaviour of heat transfer deterioration was observed in the experimental study. Nature of this deterioration and its dependence on parameters such as particle concentration, material of the particles and geometry of the containing cavity have been investigated. The fluid shows characters distinct from that of common slurries.

read more

Citations
More filters
Journal ArticleDOI

Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids

TL;DR: It was demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity, and optimum directions in nan ofluid development are suggested.
Journal ArticleDOI

Heat Transfer Intensification Using Nanofluids

TL;DR: In this paper, the authors show that the presence of nanoparticles enhances thermal conduction under macroscopically static conditions mainly due to nanoparticle structuring / networking, while the natural convective heat transfer coefficient decreases systematically with increasing nanoparticle concentration, and the deterioration is partially attributed to the high viscosity of nanofluids.
Journal ArticleDOI

Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid

TL;DR: In this paper, the effect of copper-water nanofluid as a cooling medium has been studied to simulate the behavior of heat transfer due to laminar natural convection in a differentially heated square cavity.
Journal ArticleDOI

The onset of convection in a horizontal nanofluid layer of finite depth

TL;DR: In this paper, a linear stability analysis for the onset of natural convection in a horizontal nanofluid layer is presented, which incorporates the effects of Brownian motion and thermophoresis.
Journal ArticleDOI

Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?

TL;DR: In this paper, a two component non-homogenous equilibrium model is used for the nanofluid that incorporates the effects of Brownian motion and thermophoresis, and variable thermal conductivity and variable viscosity are taken into account in this work.
References
More filters
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Conceptions for heat transfer correlation of nanofluids

TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.
Related Papers (5)