scispace - formally typeset
Open AccessJournal ArticleDOI

Note on an Approximation Treatment for Many-Electron Systems

Chr. Møller, +1 more
- 01 Oct 1934 - 
- Vol. 46, Iss: 7, pp 618-622
Reads0
Chats0
TLDR
In this article, a perturbation theory for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation was developed, and it was shown by this development that the first order correction for the energy and the charge density of the system is zero.
Abstract
A perturbation theory is developed for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation. It is shown by this development that the first order correction for the energy and the charge density of the system is zero. The expression for the second-order correction for the energy greatly simplifies because of the special property of the zero-order solution. It is pointed out that the development of the higher approximation involves only calculations based on a definite one-body problem.

read more

Content maybe subject to copyright    Report





Citations
More filters
Journal ArticleDOI

Resolution-of-identity approach to Hartree?Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions

TL;DR: In this article, the authors present a common framework for methods beyond semilocal density-functional theory (DFT), including Hartree-Fock (HF), hybrid density functionals, random-phase approximation (RPA), second-order Moller-Plesset perturbation theory (MP2), and the GW method.
Journal ArticleDOI

Kinetics of elementary reactions in low-temperature autoignition chemistry

TL;DR: In this article, a review concentrates on recent developments in the study of elementary reaction kinetics in relation to the modeling and prediction of low-temperature combustion and autoignition, with specific focus placed on the critical alkylperoxy and hydroperoxyalkyl reactions.
Book ChapterDOI

Recent Developments in Perturbation Theory

TL;DR: Perturbation theory is designed to deal systematically with the effects of small perturbations on physical systems when the effects are mathematically too difficult to calculate exactly, and the properties of the unperturbed system are known as mentioned in this paper.
Journal ArticleDOI

How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights

TL;DR: In this paper, the authors compared hybrid Hartree−Fock density functional theory to ab initio approaches for locating saddle point geometries and calculating barrier heights on a Born−Oppenhiemer potential energy surface.
Related Papers (5)