scispace - formally typeset
Journal ArticleDOI

Numerical analysis of hydrogen transport near a blunting crack tip

TLDR
In this paper, Oriani's equilibrium theory is used to relate the hydrogen in traps (micro-structural defects) to concentration in normal interstitial lattice sites (NILS), and the resulting non-linear transient hydrogen diffusion equations are integrated using a modified backward Euler method.
Abstract
T he hydrogen transport problem is studied in conjunction with large deformation elastic—plastic behavior of a material. Oriani's equilibrium theory is used to relate the hydrogen in traps (micro-structural defects) to concentration in normal interstitial lattice sites (NILS). The resulting non-linear transient hydrogen diffusion equations are integrated using a modified backward Euler method. Coupled diffusion and plastic straining is analysed with this numerical procedure in the area around a blunting crack tip. A uniform NILS concentration as dictated by Sievert's law at the pressure and temperature of interest is used as initial condition throughout the body. The crack is initially blunted by plane strain mode I (tensile) loading. The finite element results show that hydrogen residing at NILS is generally very small in comparison with the population that develops in trapping sites near the crack surface. That is, lattice diffusion delivers the hydrogen but it is predominantly the trapping that determines its distribution at temperatures of interest. The predominance of trapped hydrogen over lattice concentration prevails even in the case when hydrogen migrates under steady state conditions. Hence, the hydrostatic stress effect is less important than traps created by plastic straining as far as the creation of high total hydrogen concentration is concerned. The trapping site locations and the temperature determine the amounts and locations of high hydrogen concentrations. Consequently, ahead of a blunting crack tip, the total hydrogen concentration and plastic strain diminish with distance from the crack tip whereas the hydrostatic stress rises. This would seem to have significant consequences for fractures induced by the presence of hydrogen.

read more

Citations
More filters
Journal ArticleDOI

Hydrogen related failure of steels – a new aspect

TL;DR: In this paper, the role of hydrogen in reducing ductile crack growth resistance is attributed to the increased creation of vacancies on straining, which is supported by a recent finding of amorphisation associated with crack growth.
Journal ArticleDOI

A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel

TL;DR: In this paper, the authors present a comprehensive physical-based statistical micro-mechanical model of hydrogen embrittlement which they use to quantitatively predict the degradation in fracture strength of a high-strength steel with increasing hydrogen concentration, with the predictions verified by experiment.
Journal ArticleDOI

Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test

TL;DR: In this paper, the effect of hydrogen on the fracture behavior of quenched and tempered AISI 4135 steel at 1450 MPa was investigated by means of slow strain rate tests on smooth and circumferentially-notched round-bar specimens.
Journal ArticleDOI

Hydrogen transport near a blunting crack tip

TL;DR: In this paper, a modified hydrogen transport model was used to simulate the effect of the hydrostatic stress and trapping on the hydrogen distribution in a plastically deforming steel, where hydrogen atoms diffuse through lattice sites and trap sites are filled by lattice diffusion.
Journal ArticleDOI

Hydrogen Thermal Desorption Relevant to Delayed-Fracture Susceptibility of High-Strength Steels

TL;DR: In this paper, the authors examined the susceptibility to hydrogen embrittlement of martensitic steels by means of a delayed-fracture test and hydrogen thermal desorption analysis.
References
More filters
Journal ArticleDOI

A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)

TL;DR: A new model for hydrogen-assisted cracking is presented in this article, which explains the observations of decreasing microscopic plasticity and changes of fracture modes with decreasing stress intensities at crack tips during stress-corrosion cracking and HAC of quenched-and tempered steels.
Journal ArticleDOI

On numerically accurate finite element solutions in the fully plastic range

TL;DR: In this paper, a general criterion for testing a mesh with topologically similar repeat units is given, and it is shown that only a few conventional element types and arrangements are suitable for computations in the fully plastic range.
Journal ArticleDOI

Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture

TL;DR: In this article, a finite element method was used to analyze the deformation field around smoothly-blunting crack tips in both non-hardening and hardening elastic-plastic materials, under contained plane-strain yielding and subject to mode I opening loads.
Journal ArticleDOI

Finite element formulations for problems of large elastic-plastic deformation

TL;DR: In this article, an Eulerian finite element formulation for large elastic-plastic flow is presented, based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials.
Journal ArticleDOI

Equilibrium aspects of hydrogen-induced cracking of steels

TL;DR: In this paper, the threshold pressures, p ∗, of hydrogen and of deuterium gases necessary to cause crack propagation in AISI 4340 steel of 250 ksi yield strength, were determined as functions of plane-strain stress intensity factor K at room temperature.
Related Papers (5)