scispace - formally typeset
Journal ArticleDOI

On the nature and importance of the transition between molecules and nanocrystals: towards a chemistry of “nanoscale perfection”

Ludovico Cademartiri, +1 more
- 01 Sep 2011 - 
- Vol. 3, Iss: 9, pp 3435-3446
TLDR
Most classes of monodisperse nanomaterials (mostly nanoclusters) are surveyed and recent breakthroughs in this area are highlighted, which might be spearheading the development of a chemistry of "nanoscale perfection".
Abstract
This paper discusses the importance of the transition between molecular compounds and nanocrystals. The boundary between molecular and nanocrystals/nanoclusters can be defined by the emergence of the bulk phase; atoms in the core of the nanoclusters that are not bound to ligands. This transition in dimensions and structural organization is important because it overlaps with the boundary between atomically defined moieties (molecules can be isolated with increasing purity) and mixtures (nanocrystals have a distribution of sizes, shapes, and defects; they cannot be easily separated into batches of structurally identical species). Passing through this boundary, as the size of a structure increases beyond a few nanometres, the information about the position of each atom gradually disappears. This loss of structural information about a chemical structure fundamentally compromises our ability to use it as a part of a complex chemical system. If we are to engineer complex functions encoded in a chemical language, we will need pure batches of atomically defined (truly monodisperse) nanoscale compounds, and we will need to understand how to make them and preserve them over a broad range of length scales, compositions, and timeframes. In this review we survey most classes of monodisperse nanomaterials (mostly nanoclusters) and highlight the recent breakthroughs in this area which might be spearheading the development of a chemistry of “nanoscale perfection”.

read more

Citations
More filters
Journal ArticleDOI

Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities

TL;DR: This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties ofatomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles.
Journal ArticleDOI

From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters

TL;DR: Strong luminescence emission by the mechanism of aggregation-induced emission (AIE) is reported of Au(I)-thiolate complexes, and the synthetic strategy was extended to other thiolate ligands with added functionalities (in the form of custom-designed peptides).
Journal ArticleDOI

Bottom-up assembly of photonic crystals

TL;DR: This tutorial review highlights fundamental aspects of the physics underpinning the science of photonic crystals, insight into building-block assembly routes to the fabrication of different photonic crystal structures and compositions is provided, and a glimpse into future applications is taken.
Journal ArticleDOI

Metal nanoclusters: novel probes for diagnostic and therapeutic applications

TL;DR: The rapidly growing interest in metal nanocluster-based theranostic applications will certainly not only fuel the excitement and stimulate research in this highly active field, but also inspire broader concerns across various disciplines.
Journal ArticleDOI

Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures.

TL;DR: This Review summarizes the progress in the utilization of atomically precise metal nanoclusters for catalysis, a new class of model catalysts that have enabled heterogeneous catalysis research at the single-atom and single-electron levels.
References
More filters
Journal ArticleDOI

Chemical methods for the production of graphenes.

TL;DR: The use of colloidal suspensions to produce new materials composed of graphene and chemically modified graphene is reviewed, which is both versatile and scalable, and is adaptable to a wide variety of applications.
Journal ArticleDOI

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications

TL;DR: Nanocrystals (NCs) discussed in this Review are tiny crystals of metals, semiconductors, and magnetic material consisting of hundreds to a few thousand atoms each that are among the hottest research topics of the last decades.
Journal ArticleDOI

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons

TL;DR: A simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls is described.
Journal ArticleDOI

Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution

TL;DR: The crystallization and x-ray structure determination of a p-mercaptobenzoic acid–protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs, is reported, which is chiral, with the two enantiomers alternating in the crystal lattice.
Journal ArticleDOI

Secondary building units, nets and bonding in the chemistry of metal–organic frameworks

TL;DR: The geometries of 131 SBUs, their connectivity and composition of transition-metal carboxylate clusters which may serve as secondary building units (SBUs) towards construction and synthesis of metal-organic frameworks (MOFs).
Related Papers (5)