02 Mar 2021-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 9, Iss: 8, pp 4648-4657

Abstract: Despite the fact that research into most high-performance thermoelectric (TE) materials is focused on tellurides, compelling demand has arisen to replace tellurium (Te) with selenium (Se) due to the scarcity of Te. Silver bismuth diselenide (AgBiSe2, ABS) has been widely studied in relation to thermoelectric applications due to its intrinsically low thermal conductivity. However, its low power factor (PF) has been considered as an underlying issue preventing improvements of the TE properties of ABS. Here, it is demonstrated that a high PF can be achieved by incorporating Cu into the ABS system via the nestification of conduction bands when a disordering between Ag and Bi occurs. Degenerate electronic bands simultaneously increase the density-of-states effective mass and carrier concentration while not reducing the carrier mobility significantly. Therefore, improved TE performance with a maximum PF of 8.2 μW cm−1 K−2 and a peak zT value of 1.14 was achieved at 773 K, opening a new horizon for the development of environmentally benign TE materials with high performance capabilities.

... read more

Topics: Thermoelectric effect (55%)

More

8 results found

••

Abstract: Significance Thermoelectric technology can boost energy consumption efficiency by converting some of the waste heat into useful electricity. Heat-to-power conversion efficiency optimization is mainly achieved by decreasing the thermal conductivity in many materials. In comparison, there has been much less success in increasing the power factor. We report successful power factor enhancement by improving the carrier mobility. Our successful approach could suggest methods to improve the power factor in other materials. Using our approach, the highest power factor reaches ∼106 μW⋅cm−1⋅K−2 at room temperature. Such a high power factor further yields a record output power density in a single-leg device tested between 293 K and 868 K, thus demonstrating the importance of high power factor for power generation applications. Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of ∼106 μW⋅cm−1⋅K−2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of ∼22 W⋅cm−2 based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications.

... read more

Topics: Power density (61%), Power factor (60%)

7 Citations

•••

Abstract: The interplay between charges and spins may influence the dynamics of the carriers and determine their thermoelectric properties. In that respect, magneto-thermoelectric power MTEP, i.e. the measur...

... read more

Topics: Thermoelectric effect (56%), Thermoelectric materials (55%), Seebeck coefficient (55%)

3 Citations

•••

Abstract: The configurational entropy is an emerging descriptor in the functional materials genome. In thermoelectric materials, the configurational entropy helps tune the delicate trade-off between carrier mobility and lattice thermal conductivity, as well as the structural phase transition, if any. Taking GeTe as an example, low-entropy GeTe generally have high carrier mobility and distinguished zT > 2, but the rhombohedral-cubic phase transition restricts the applications. In contrast, despite cubic structure and ultralow lattice thermal conductivity, the degraded carrier mobility leads to a low zT in high-entropy GeTe. Herein, medium-entropy alloying is implemented to suppress the phase transition and achieve the cubic GeTe with ultralow lattice thermal conductivity yet decent carrier mobility. In addition, co-alloying of (Mn, Pb, Sb, Cd) facilitates multivalence bands convergence and band flattening, thereby yielding good Seebeck coefficients and compensating for decreased carrier mobility. For the first time, a state-of-the-art zT of 2.1 at 873 K and average zT ave of 1.3 between 300 and 873 K are attained in cubic phased Ge0.63Mn0.15Pb0.1Sb0.06Cd0.06Te. Moreover, a record-high Vickers hardness of 270 is attained. These results not only promote GeTe materials for practical applications, but also present a breakthrough in the burgeoning field of entropy engineering.

... read more

Topics: Thermoelectric materials (53%), Electron mobility (52%), Configuration entropy (52%)

1 Citations

•••

Abstract: To realize the widespread use of thermoelectric (TE) applications, developing low-cost, eco-friendly, and high-performance TE materials with an optimal band gap is essential. We find that the lapie...

... read more

Topics: Thermoelectric effect (58%), Band gap (56%)

••

Abstract: Development of efficient thermoelectric materials requires a designing approach that leads to excellent electronic and phononic transport properties. Using first-principles density functional theory and semiclassical Boltzmann transport theory, we report unprecedented enhancement in electronic transport properties of AIIBIVC2V (group II = Be, Mg, Zn, and Cd; group IV = Si, Ge, and Sn; and group V = P and As) chalcopyrites via isoelectronic substitution. Multiple valleys in conduction bands, present in these compounds, are tuned to converge by substitution of group IV dopant. Additionally, this substitution improves the convergence of valence bands, which is found to have a direct correlation with the tetragonal distortion of these chalcopyrites. Furthermore, several chalcopyrite compounds with heavy elements such as Zn, Cd, and As possess low phonon group velocities and large Gruneisen parameters that lead to low lattice thermal conductivity. Combination of optimized electronic transport properties and lo...

... read more

More

73 results found

••

Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

... read more

Topics: Local-density approximation (60%), Orbital-free density functional theory (57%), Density functional theory (56%) ... read more

117,932 Citations

••

Abstract: The formal relationship between ultrasoft (US) Vanderbilt-type pseudopotentials and Bl\"ochl's projector augmented wave (PAW) method is derived. It is shown that the total energy functional for US pseudopotentials can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudopotential method with relaxed core all electron methods. These tests include small molecules $({\mathrm{H}}_{2}{,\mathrm{}\mathrm{H}}_{2}{\mathrm{O},\mathrm{}\mathrm{Li}}_{2}{,\mathrm{}\mathrm{N}}_{2}{,\mathrm{}\mathrm{F}}_{2}{,\mathrm{}\mathrm{BF}}_{3}{,\mathrm{}\mathrm{SiF}}_{4})$ and several bulk systems (diamond, Si, V, Li, Ca, ${\mathrm{CaF}}_{2},$ Fe, Co, Ni). Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.

... read more

Topics: Cauchy stress tensor (53%)

46,297 Citations

••

Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

... read more

Topics: Projector augmented wave method (59%), Ab initio (58%), Degrees of freedom (physics and chemistry) (51%) ... read more

27,360 Citations

••

Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

... read more

Topics: Canonical ensemble (59%), Ab initio (57%), Energy minimization (53%)

13,961 Citations

•••

Abstract: Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.

... read more

Topics: Thermoelectric cooling (63%), Thermoelectric materials (61%), Thermoelectric effect (59%)

7,699 Citations