scispace - formally typeset
Open AccessJournal ArticleDOI

Predictions for a planet just inside Fomalhaut's eccentric ring

Reads0
Chats0
TLDR
In this paper, the eccentricity and sharpness of the edge of Fomalhaut's disk are due to a planet just interior to the ring edge, which is likely to be located at the boundary of a chaotic zone in the corotation region of the planet.
Abstract
We propose that the eccentricity and sharpness of the edge of Fomalhaut’s disk are due to a planet just interior to the ring edge. The collision timescale consistent with the disk opacity is long enough that spiral density waves cannot be driven near the planet. The ring edge is likely to be located at the boundary of a chaotic zone in the corotation region of the planet. We find that this zone can open a gap in a particle disk as long as the collision timescale exceeds the removal or ejection timescale in the zone. We use the slope measured from the ring edge surface brightness profile to place an upper limit on the planet mass. The removal timescale in the chaotic zone is used to estimate a lower limit. The ring edge has eccentricity caused by secular perturbations from the planet. These arguments imply that the planet has a mass between that of Neptune and that of Saturn, a semi-major axis of approximately 119 AU and longitude of periastron and eccentricity, 0.1, the same as that of the ring edge.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Dynamics of Small Bodies in Planetary Systems

TL;DR: A detailed review of the structures seen in debris disks, and a disk-dynamical theory which can be used to interpret those observations is given in this article, where the authors show that much of the observed structures, both axisymmetric and asymmetric, can be explained by a model in which the dust is produced in a planetesimal belt which is perturbed by a nearby, unseen, planet.
Book ChapterDOI

Planetary rings and other astrophysical disks

TL;DR: In this article, the physics shared by planetary rings and various disks that populate the Universe are discussed. But the focus is on fundamental physics and dynamics, and how research into the two classes of object connects.
Journal ArticleDOI

Constraining planetesimal stirring: how sharp are debris disc edges?

TL;DR: In this paper, the sharpness of the outer edge of a disc was used to constrain the stirring levels of the disc's inner disc, showing that the sharper the edge, the lower the eccentricity dispersion must be.
References
More filters
Book

Solar system dynamics

TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. And the disturbing function is extended to include the spin-orbit coupling and the resonance perturbations.

Solar system dynamics

TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. But the disturbing function is defined as a special case of the two body problem and is not considered in this paper.
Journal ArticleDOI

Disk-Satellite Interactions

TL;DR: In this article, the authors calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass, and show that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.
Journal ArticleDOI

The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem

TL;DR: In this article, the resonance overlap criterion for the onset of stochastic behavior was applied to the planar circular-restricted three-body problem with small mass ratio (mu), and its predictions for mu = 0.001, 0.0001, and 0.00001 were compared to the transitions observed in the numerically determined Kolmogorov-Sinai entropy and found to be in remarkably good agreement.
Journal ArticleDOI

Submillimetre images of dusty debris around nearby stars

TL;DR: In this paper, the presence of the central cavity, approximately the size of Neptune's orbit, was detected in the emission from Fomalhaut, beta Pictoris and Vega, which may be the signature of Earth-like planets.
Related Papers (5)