scispace - formally typeset
Open AccessJournal ArticleDOI

Random Forests

Leo Breiman
- Vol. 45, Iss: 1, pp 5-32
TLDR
Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract
Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

An Analysis of Ensemble Pruning Techniques Based on Ordered Aggregation

TL;DR: The results of this empirical investigation show that ordered aggregation can be used for the efficient generation of pruned ensembles that are competitive, in terms of performance and robustness of classification, with computationally more costly methods that directly select optimal or near-optimal subensembles.
Proceedings ArticleDOI

Human Pose Estimation Using Body Parts Dependent Joint Regressors

TL;DR: This work proposes a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms.
Journal ArticleDOI

A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment

TL;DR: In this paper, a Parallel Random Forest (PRF) algorithm for big data on the Apache Spark platform is presented. And the PRF algorithm is optimized based on a hybrid approach combining dataparallel and task-parallel optimization, and a dual parallel approach is carried out in the training process of RF and a task Directed Acyclic Graph (DAG) is created according to the parallel training process.
Journal ArticleDOI

A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier

TL;DR: The Hidden Naive Bayes (HNB) model can be applied to intrusion detection problems that suffer from dimensionality, highly correlated features and high network data stream volumes and significantly improves the accuracy of detecting denial-of-services (DoS) attacks.
References
More filters
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

The random subspace method for constructing decision forests

TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Journal ArticleDOI

An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization

TL;DR: In this article, the authors compared the effectiveness of randomization, bagging, and boosting for improving the performance of the decision-tree algorithm C4.5 and found that in situations with little or no classification noise, randomization is competitive with bagging but not as accurate as boosting.
Journal ArticleDOI

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Related Papers (5)