scispace - formally typeset
Open AccessJournal ArticleDOI

Random Forests

Leo Breiman
- Vol. 45, Iss: 1, pp 5-32
TLDR
Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract
Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Quantile Regression Forests

TL;DR: It is shown here that random forests provide information about the full conditional distribution of the response variable, not only about the conditional mean, in order to be competitive in terms of predictive power.
Journal ArticleDOI

A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update

TL;DR: A comprehensive overview of the modern classification algorithms used in EEG-based BCIs is provided, the principles of these methods and guidelines on when and how to use them are presented, and a number of challenges to further advance EEG classification in BCI are identified.
Journal ArticleDOI

A random forest guided tour

TL;DR: The present article reviews the most recent theoretical and methodological developments for random forests, with special attention given to the selection of parameters, the resampling mechanism, and variable importance measures.
Journal ArticleDOI

MoleculeNet: a benchmark for molecular machine learning

TL;DR: A large scale benchmark for molecular machine learning consisting of multiple public datasets, metrics, featurizations and learning algorithms.
Journal ArticleDOI

Classification of imbalanced data: a review

TL;DR: This paper provides a review of the classification of imbalanced data regarding the application domains, the nature of the problem, the learning difficulties with standard classifier learning algorithms; the learning objectives and evaluation measures; the reported research solutions; and the class imbalance problem in the presence of multiple classes.
References
More filters
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

The random subspace method for constructing decision forests

TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Journal ArticleDOI

An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization

TL;DR: In this article, the authors compared the effectiveness of randomization, bagging, and boosting for improving the performance of the decision-tree algorithm C4.5 and found that in situations with little or no classification noise, randomization is competitive with bagging but not as accurate as boosting.
Journal ArticleDOI

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Related Papers (5)