scispace - formally typeset
Open AccessJournal ArticleDOI

Random Forests

Leo Breiman
- Vol. 45, Iss: 1, pp 5-32
TLDR
Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract
Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier.

TL;DR: The current lncLocator can predict five subcellular localizations of lncRNAs, including cytoplasm, nucleus, cytosol, ribosome and exosome, and yield an overall accuracy of 0.59 on the constructed benchmark dataset.
Journal ArticleDOI

GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery

TL;DR: In this article, a novel 30'm land cover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib (Global Spatial Temporal Spectra Library) on the Google Earth Engine computing platform.
Journal ArticleDOI

Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke.

TL;DR: Machine learning algorithms, particularly the deep neural network, can improve the prediction of long-term outcomes in ischemic stroke patients.
Proceedings ArticleDOI

Recognizing Depression from Twitter Activity

TL;DR: This paper extensively evaluates the effectiveness of using a user's social media activities for estimating degree of depression, and extracts several features from the activity histories of Twitter users to construct models for estimating the presence of active depression.
Journal ArticleDOI

Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city

TL;DR: In this article, the authors used stratified random sampling across 19 land cover classes using 190 sample plots to measure carbon storage and derived canopy cover from color-infrared orthophotos using an object-oriented approach and Random Forest machine learning.
References
More filters
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

The random subspace method for constructing decision forests

TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Journal ArticleDOI

An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization

TL;DR: In this article, the authors compared the effectiveness of randomization, bagging, and boosting for improving the performance of the decision-tree algorithm C4.5 and found that in situations with little or no classification noise, randomization is competitive with bagging but not as accurate as boosting.
Journal ArticleDOI

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Related Papers (5)