scispace - formally typeset
Open AccessJournal ArticleDOI

Random Forests

Leo Breiman
- Vol. 45, Iss: 1, pp 5-32
TLDR
Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract
Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Isolation-Based Anomaly Detection

TL;DR: This article proposes a method called Isolation Forest (iForest), which detects anomalies purely based on the concept of isolation without employing any distance or density measure---fundamentally different from all existing methods.
Journal ArticleDOI

Machine Learning in Agriculture: A Review.

TL;DR: A comprehensive review of research dedicated to applications of machine learning in agricultural production systems is presented, demonstrating how agriculture will benefit from machine learning technologies.
Journal ArticleDOI

Explaining nonlinear classification decisions with deep Taylor decomposition

TL;DR: A novel methodology for interpreting generic multilayer neural networks by decomposing the network classification decision into contributions of its input elements by backpropagating the explanations from the output to the input layer is introduced.
Journal ArticleDOI

Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism

TL;DR: It is demonstrated that dysbiosis of the gut microbiome may have a causal role in the development of depressive-like behaviors, in a pathway that is mediated through the host’s metabolism.
Book ChapterDOI

Food-101 – Mining Discriminative Components with Random Forests

TL;DR: A novel method to mine discriminative parts using Random Forests (rf), which allows us to mine for parts simultaneously for all classes and to share knowledge among them, and compares nicely to other s-o-a component-based classification methods.
References
More filters
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

The random subspace method for constructing decision forests

TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Journal ArticleDOI

An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization

TL;DR: In this article, the authors compared the effectiveness of randomization, bagging, and boosting for improving the performance of the decision-tree algorithm C4.5 and found that in situations with little or no classification noise, randomization is competitive with bagging but not as accurate as boosting.
Journal ArticleDOI

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Related Papers (5)