scispace - formally typeset
Open AccessJournal ArticleDOI

Random Forests

Leo Breiman
- Vol. 45, Iss: 1, pp 5-32
TLDR
Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Abstract
Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges a.s. to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation between them. Using a random selection of features to split each node yields error rates that compare favorably to Adaboost (Y. Freund & R. Schapire, Machine Learning: Proceedings of the Thirteenth International conference, aaa, 148–156), but are more robust with respect to noise. Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the splitting. Internal estimates are also used to measure variable importance. These ideas are also applicable to regression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Joint Cascade Face Detection and Alignment

TL;DR: The key idea is to combine face alignment with detection, observing that aligned face shapes provide better features for face classification and learns the two tasks jointly in the same cascade framework, by exploiting recent advances in face alignment.
Journal ArticleDOI

A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems

TL;DR: A survey of current biomass estimation methods using remote sensing data and discusses four critical issues – collection of field-based biomass reference data, extraction and selection of suitable variables fromRemote sensing data, identification of proper algorithms to develop biomass estimation models, and uncertainty analysis to refine the estimation procedure.
Journal ArticleDOI

Handling class imbalance in customer churn prediction

TL;DR: It is found that there is no need to under-sample so that there are as many churners in your training set as non churners, and under-sampling can lead to improved prediction accuracy, especially when evaluated with AUC.
Journal ArticleDOI

GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran

TL;DR: The BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively, and Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.
Journal ArticleDOI

Unsupervised Learning With Random Forest Predictors

TL;DR: The RF dissimilarity is useful for detecting tumor sample clusters on the basis of tumor marker expressions and can be described with simple thresholding rules in this application.
References
More filters
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

The random subspace method for constructing decision forests

TL;DR: A method to construct a decision tree based classifier is proposed that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
Journal ArticleDOI

An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization

TL;DR: In this article, the authors compared the effectiveness of randomization, bagging, and boosting for improving the performance of the decision-tree algorithm C4.5 and found that in situations with little or no classification noise, randomization is competitive with bagging but not as accurate as boosting.
Journal ArticleDOI

An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants

TL;DR: It is found that Bagging improves when probabilistic estimates in conjunction with no-pruning are used, as well as when the data was backfit, and that Arc-x4 behaves differently than AdaBoost if reweighting is used instead of resampling, indicating a fundamental difference.
Related Papers (5)