scispace - formally typeset

Journal ArticleDOI

Rapid direct injection LC-MS/MS method for analysis of prioritized indicator compounds in wastewater effluent

04 Sep 2015-Vol. 1, Iss: 5, pp 632-643

AbstractTrace organic compounds (TOrCs) have been detected in drinking water sources for several years, raising concerns due to their potential risks to public health. The main contributor of TOrCs to drinking water is through wastewater discharges. However, there are several hundred TOrCs currently known with numerous new organic chemicals being released daily, making it unfeasible to monitor each one in water. This study used a detailed literature review and scoring system to establish a list of twenty priority indicator TOrCs in US wastewaters. Next, a rapid direct injection LC-MS/MS method for analysis of these compounds was developed without the need for an extraction step and only 80 μL sample volume while providing method reporting limits of 3–39 ng L−1 for all but one TOrC (sucralose: 302 ng L−1). The elimination of an extraction step reduced matrix effects considerably making the method suitable for wastewater analysis. Method validation including matrix spike recoveries, linearity of calibration curve and inter- and intra-day variability was successfully performed. Finally, the twenty indicator TOrCs were evaluated in four different wastewater treatment plant (WWTP) effluents through four sample campaigns spread across a year. The occurrence data indicated that all indicator TOrCs were detected in at least three out of the four WWTP effluents. Sucralose, iohexol, TCPP, acesulfame and gemfibrozil were detected in all samples at the four WWTPs indicating they could be used as indicators of wastewater influence in receiving waters. DEET, caffeine, triclosan, iopromide and others are effective indicators at showing seasonal variations, treatment process efficacy, and consumption patterns. Overall, the impact of this study will help develop more effective monitoring programs for TOrCs in water reuse schemes.

Topics: Wastewater (50%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
TL;DR: Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far.
Abstract: Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.

80 citations


Journal ArticleDOI
TL;DR: The present study shows the development and validation of a DI-based method by ultra-high-performance liquid chromatography quadrupole-linear ion trap analyser (UHPLC-QqLIT-MS/MS) applied to the monitoring of 115 organic microcontaminants at the ngL-1/μg L-1 level in wastewater effluents from urban WWTPs.
Abstract: It is well known that wastewater treatment plant (WWTP) effluents usually contain micropollutants such as pharmaceuticals (or their transformation products, TPs) or pesticides, which is a major issue when evaluating their possible reuse (eg for irrigation in agriculture) In search for an improved accuracy and simplicity, methods based on the direct injection of the sample (DI) represent a recent trend taking advantage of the increasing sensitivity of new mass spectrometry (MS) instruments Thus, the present study shows the development and validation of a DI-based method by ultra-high-performance liquid chromatography quadrupole-linear ion trap analyser (UHPLC-QqLIT-MS/MS) The proposed method was applied to the monitoring of 115 organic microcontaminants (including pharmaceuticals, TPs and pesticides) at the ngL-1/μgL-1 level in wastewater effluents from urban WWTPs Sample pre-treatment was reduced to acetonitrile addition and filtration of the mixture previous to LC-MS analysis Total analysis time was <15min A subsequent validation protocol was carried out in treated WW (TWW), following indications of SANTE and Eurachem Guidelines Linearity and matrix effect were evaluated in the range of 10-1000ngL-1 70% of the analytes showed a moderate matrix effect (≤25%) Trueness (expressed as recovery) and precision (calculated as relative standard deviation, RSD) were evaluated at four concentration levels (20, 50, 500 and 1000ngL-1) in TWW samples The LODs ranged from 1 to 357ngL-1 and the LOQs from 10 to 500ngL-1 92% of the compounds showed limits of quantification ≤100ngL-1 In most cases, mean recoveries were in the range 70-120%, and RSD values were ≤20% The validated method was successfully applied to the analysis of 10 TWW samples, demonstrating the occurrence of 67 target compounds at concentration levels from 26705ngL-1 (4-aminoantipyrine) to 10ngL-1 (tebuconazole and bezafibrate)

71 citations


Journal ArticleDOI
TL;DR: The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring.
Abstract: The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India.

63 citations


Journal ArticleDOI
TL;DR: The results highlight the importance of analyzing water samples using multiple separation techniques and in multiple ionization modes to obtain a comprehensive chemical contaminant profile.
Abstract: Efficient strategies are required to implement comprehensive suspect screening methods using high-resolution mass spectrometry within environmental monitoring campaigns. In this study, both liquid and gas chromatography time-of-flight mass spectrometry (LC-QTOF-MS and GC-QTOF-MS) were used to screen for >5000 target and suspect compounds in the Sacramento–San Joaquin River Delta in Northern California. LC-QTOF-MS data were acquired in All-Ions fragmentation mode in both positive and negative electrospray ionization (ESI). LC suspects were identified using two accurate mass LC-QTOF-MS/MS libraries containing pesticides, pharmaceuticals, and other environmental contaminants and a custom exact mass database with predicted transformation products (TPs). The additional fragment information from the All-Ions acquisition improved the confirmation of the compound identity, with a low false positive rate (9%). Overall, 25 targets, 73 suspects, and 5 TPs were detected. GC-QTOF-MS extracts were run in negative chemi...

57 citations


Journal ArticleDOI
TL;DR: Assessing whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types can help provide guidance on in vitroBioassay selection and required sample enrichment for optimised detection of endocrineactivity in environmental waters.
Abstract: The presence of endocrine disrupting chemicals in the aquatic environment poses a risk for ecosystem health. Consequently there is a need for sensitive tools, such as in vitro bioassays, to monitor endocrine activity in environmental waters. The aim of the current study was to assess whether current in vitro bioassays are suitable to detect endocrine activity in a range of water types. The reviewed assays included androgenic (n = 11), progestagenic (n = 6), glucocorticoid (n = 5), thyroid (n = 5) and estrogenic (n = 8) activity in both agonist and antagonist mode. Existing in vitro bioassay data were re-evaluated to determine assay sensitivity, with the calculated method detection limit compared with measured hormonal activity in treated wastewater, surface water and drinking water to quantify whether the studied assays were sufficiently sensitive for environmental samples. With typical sample enrichment, current in vitro bioassays are sufficiently sensitive to detect androgenic activity in treated wastewater and surface water, with anti-androgenic activity able to be detected in most environmental waters. Similarly, with sufficient enrichment, the studied mammalian assays are able to detect estrogenic activity even in drinking water samples. Fewer studies have focused on progestagenic and glucocorticoid activity, but some of the reviewed bioassays are suitable for detecting activity in treated wastewater and surface water. Even less is known about (anti)thyroid activity, but the available data suggests that the more sensitive reviewed bioassays are still unlikely to detect this type of activity in environmental waters. The findings of this review can help provide guidance on in vitro bioassay selection and required sample enrichment for optimised detection of endocrine activity in environmental waters.

50 citations


Cites background from "Rapid direct injection LC-MS/MS met..."

  • ...Absolute recoveries withmore complexmatrices such aswastewater can be significantly lower, and accurate chemical quantification often requires the use of deuterated standards (Anumol et al., 2013; Anumol et al., 2015)....

    [...]


References
More filters

Journal ArticleDOI
Abstract: To provide the first nationwide reconnaissance of the occurrence of pharmaceuticals, hormones, and other organic wastewater contaminants (OWCs) in water resources, the U.S. Geological Survey used five newly developed analytical methods to measure concentrations of 95 OWCs in water samples from a network of 139 streams across 30 states during 1999 and 2000. The selection of sampling sites was biased toward streams susceptible to contamination (i.e. downstream of intense urbanization and livestock production). OWCs were prevalent during this study, being found in 80% of the streams sampled. The compounds detected represent a wide range of residential, industrial, and agricultural origins and uses with 82 of the 95 OWCs being found during this study. The most frequently detected compounds were coprostanol (fecal steroid), cholesterol (plant and animal steroid), N,N-diethyltoluamide (insect repellant), caffeine (stimulant), triclosan (antimicrobial disinfectant), tri(2-chloroethyl)phosphate (fire retardant), and 4-nonylphenol (nonionic detergent metabolite). Measured concentrations for this study were generally low and rarely exceeded drinking-water guidelines, drinking-water health advisories, or aquatic-life criteria. Many compounds, however, do not have such guidelines established. The detection of multiple OWCs was common for this study, with a median of seven and as many as 38 OWCs being found in a given water sample. Little is known about the potential interactive effects (such as synergistic or antagonistic toxicity) that may occur from complex mixtures of OWCs in the environment. In addition, results of this study demonstrate the importance of obtaining data on metabolites to fully understand not only the fate and transport of OWCs in the hydrologic system but also their ultimate overall effect on human health and the environment.

6,628 citations


Journal ArticleDOI
TL;DR: This review attempts to synthesize the literature on environmental origin, distribution/occurrence, and effects and to catalyze a more focused discussion in the environmental science community.
Abstract: During the last three decades, the impact of chemical pollution has focused almost exclusively on the conventional "priority" pollutants, especially those acutely toxic/carcinogenic pesticides and industrial intermediates displaying persistence in the environment. This spectrum of chemicals, however, is only one piece of the larger puzzle in "holistic" risk assessment. Another diverse group of bioactive chemicals receiving comparatively little attention as potential environmental pollutants includes the pharmaceuticals and active ingredients in personal care products (in this review collectively termed PPCPs), both human and veterinary, including not just prescription drugs and biologics, but also diagnostic agents, "nutraceuticals," fragrances, sun-screen agents, and numerous others. These compounds and their bioactive metabolites can be continually introduced to the aquatic environment as complex mixtures via a number of routes but primarily by both untreated and treated sewage. Aquatic pollution is particularly troublesome because aquatic organisms are captive to continual life-cycle, multigenerational exposure. The possibility for continual but undetectable or unnoticed effects on aquatic organisms is particularly worrisome because effects could accumulate so slowly that major change goes undetected until the cumulative level of these effects finally cascades to irreversible change--change that would otherwise be attributed to natural adaptation or ecologic succession. As opposed to the conventional, persistent priority pollutants, PPCPs need not be persistent if they are continually introduced to surface waters, even at low parts-per-trillion/parts-per-billion concentrations (ng-microg/L). Even though some PPCPs are extremely persistent and introduced to the environment in very high quantities and perhaps have already gained ubiquity worldwide, others could act as if they were persistent, simply because their continual infusion into the aquatic environment serves to sustain perpetual life-cycle exposures for aquatic organisms. This review attempts to synthesize the literature on environmental origin, distribution/occurrence, and effects and to catalyze a more focused discussion in the environmental science community.

4,032 citations


Journal ArticleDOI
Abstract: The occurrence of 32 drug residues belonging to different medicinal classes like antiphlogistics, lipid regulators, psychiatric drugs, antiepileptic drugs, betablockers and β 2 -sympathomimetics as well as five metabolites has been investigated in German municipal sewage treatment plant (STP) discharges, river and stream waters. Due to the incomplete removal of drug residues during passage through a STP, above 80% of the selected drugs were detectable in at least one municipal STP effluent with concentration levels up to 6.3 μ g l −1 (carbamazepine) and thus resulting in the contamination of the receiving waters. 20 different drugs and 4 corresponding metabolites were measured in river and stream waters. Mainly acidic drugs like the lipid regulators bezafibrate, gemfibrozil, the antiphlogistics diclofenac, ibuprofen, indometacine, naproxen, phenazone and the metabolites clofibric acid, fenofibric acid and salicylic acid as well as neutral or weak basic drugs like the betablockers metoprolol, propranolol and the antiepileptic drug carbamazepine were found to be ubiquitously present in the riversand streams, mostly in the ng l −1 -range. However, maximum concentrations were determined up to 3.1 μ g l −1 and median values as high as 0.35 μ g l −1 (both bezafibrate). The drugs detected in the environment were predominantly applied in human medicine. It can therefore be assumed that the load of municipal STP effluents in the surface water highly influences the contamination. Due to their wide-spread presence in the aquatic environment many of these drugs have to be classified as relevant environmental chemicals.

2,864 citations


Journal ArticleDOI
TL;DR: Atenolol, atrazine, DEET, estrone, meprobamate, and trimethoprim can serve as indicator compounds representing potential contamination from other pharmaceuticals and EDCs and can gauge the efficacy of treatment processes.
Abstract: The drinking water for more than 28 million people was screened for a diverse group of pharmaceuticals, potential endocrine disrupting compounds (EDCs), and other unregulated organic contaminants. Source water, finished drinking water, and distribution system (tap) water from 19 U.S. water utilities was analyzed for 51 compounds between 2006 and 2007. The 11 most frequently detected compounds were atenolol, atrazine, carbamazepine, estrone, gemfibrozil, meprobamate, naproxen, phenytoin, sulfamethoxazole, TCEP, and trimethoprim. Median concentrations of these compounds were less than 10 ng/L, except for sulfamethoxazole in source water (12 ng/L), TCEP in source water (120 ng/L), and atrazine in source, finished, and distribution system water (32, 49, and 49 ng/L). Atrazine was detected in source waters far removed from agricultural application where wastewater was the only known source of organic contaminants. The occurrence of compounds in finished drinking water was controlled by the type of chemical oxi...

1,388 citations


Journal ArticleDOI
TL;DR: Conventional treatment would have low removal of many EDC/PPCPs, while addition of PAC and/or ozone could substantially improve their removals, and existing strategies that predict relative removal of herbicides, pesticides, and other organic pollutants can be directly applied.
Abstract: The potential occurrence of endocrine-disrupting compounds (EDCs) as well as pharmaceuticals and personal care products (PPCPs) in drinking water supplies raises concern over the removal of these compounds by common drinking water treatment processes. Three drinking water supplies were spiked with 10 to 250 ng/L of 62 different EDC/PPCPs; one model water containing an NOM isolate was spiked with 49 different EDC/PPCPs. Compounds were detected by LC/MS/MS or GC/MS/MS. These test waters were subjected to bench-scale experimentation to simulate individual treatment processes in a water treatment plant (WTP). Aluminum sulfate and ferric chloride coagulants or chemical lime softening removed some polyaromatic hydrocarbons (PAHs) but removed 98% of GC/MS/MS compounds (more volatile) and 10% to >95% of LC/MS/MS compounds (more polar); higher PAC dosages improved EDC/PPCP removal. EDC/PPCP per...

1,301 citations