scispace - formally typeset
Open AccessJournal ArticleDOI

Reflections on O2 as a Biosignature in Exoplanetary Atmospheres.

Victoria S. Meadows
- 01 Oct 2017 - 
- Vol. 17, Iss: 10, pp 1022-1052
TLDR
Environmental factors for abiotic O2 have been identified and will improve the ability to choose optimal targets and measurements to guard against false positives, and thorough evaluation of potential biosignatures works to increase confidence in life detection.
Abstract
Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO2 and H2O—molecules that are expected to be abundant and widespread on habitable terrestrial planets—oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known “false positives”—geological or photochemical processes that could also produce large quantities of stable O2. O2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environm...

read more

Citations
More filters
Journal Article

Evolution of a Habitable Planet

TL;DR: In this paper, it is shown that Earth's climate has remained conducive to life for the past 3.5 billion years or more, despite a large increase in solar luminosity, probably because of previous higher concentrations of CO 2 and/or CH4.
Journal ArticleDOI

Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet.

TL;DR: In this article, the impact of active M dwarf stars on the atmospheric equilibrium and surface conditions of a habitable zone Earth-like planet is investigated, which is key to assessing M dwarf planet habitability.
Journal ArticleDOI

Evolved Climates and Observational Discriminants for the TRAPPIST-1 Planetary System

TL;DR: In this paper, a 1D terrestrial-planet climate model with line-by-line radiative transfer and mixing length convection (VPL Climate) coupled with a terrestrial photochemistry model was used to simulate environmental states for the TRAPPIST-1 planets.

Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation

TL;DR: In this article, a combination of Fe and Mo isotope systematics of Ca-Mg carbonates and shales from the 2.68 to 2.50 Ga Campbellrand-Malmani carbonate platform of the Kaapvaal Craton in South Africa was used to constrain free O2 levels in the photic zone of a Late Archean marine basin by the combined use of Fe-Mo isotope systems.
References
More filters
Journal ArticleDOI

Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres*

TL;DR: In this paper, the authors search the Hubble Space Telescope (HST) archive for previously unanalyzed observations of stellar H I Lyα emission lines, their primary purpose being to look for new detections of Lyα absorption from the outer heliosphere and to also search for analogous absorption of the astrospheres surrounding the observed stars.
Journal ArticleDOI

Evolution of the atmosphere.

TL;DR: In the case of Earth and other inner planets, early outgassing released mainly carbon dioxide and water vapour, and the secondary veneer of comets and meteorites added further volatiles Photodissociation caused secondary changes including the production of traces of oxygen from water Earth's gravity cannot retain light gases including hydrogen but retains oxygen Water vapour generally does not pass the cold trap at the stratopause as discussed by the authors.
Journal ArticleDOI

Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time".

TL;DR: It is argued that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets, including Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place.
Journal ArticleDOI

Hydrogen greenhouse planets beyond the habitable zone

TL;DR: The authors showed that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that 40 bars of pure H2 on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star.
Journal ArticleDOI

Spectral Signatures of Photosynthesis. I. Review of Earth Organisms

TL;DR: The "near-infrared (NIR) end" of the red edge to trend from blue-shifted to reddest for snow algae, temperate algae, lichens, mosses, aquatic plants, and finally terrestrial vascular plants is found.
Related Papers (5)