scispace - formally typeset
Open AccessJournal ArticleDOI

Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils.

Reads0
Chats0
TLDR
Although the denitrifying community of soils may differ in their propensity to emit N2O, it may be difficult to predict such characteristics by analysis of the community composition, as a common feature of strains tested in the laboratory is that the relative amounts of N 2O produced is correlated with acidity.
Abstract
Denitrifying prokaryotes use NOx as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N2O and N2, depending on the relative activity of the enzymes catalysing the stepwise reduction of NO3− to N2O and finally to N2. Cultured denitrifying prokaryotes show characteristic transient accumulation of NO2−, NO and N2O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N2O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N2O produced (N2O/(N2+N2O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N2O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N2O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Microbial control over carbon cycling in soil.

TL;DR: The phylogenetic level at which microbes form meaningful guilds is considered, based on overall life history strategies, and it is suggested that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy.
Journal ArticleDOI

Nitrogen losses from the soil/plant system: a review

TL;DR: It is shown that careful management of temperate soil/plant systems using best management practices and newly developed technologies can increase the sustainability of agriculture and reduce its impact on the environment.
Journal ArticleDOI

Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis

TL;DR: In this paper, a meta-analysis using published literature from 2007 to 2013 showed that biochar reduced soil N2O emissions by 54% in laboratory and field studies and that the biochar feedstock, pyrolysis conditions and C/N ratio were key factors influencing emissions.
Journal ArticleDOI

Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates

TL;DR: It is argued that it is urgently necessary to incorporate microbial traits into biogeochemical ecosystem modeling in order to increase the estimation reliability of N2O emissions and proposed a molecular methodology oriented framework from gene to ecosystem scales for more robust prediction and mitigation of future N1O emissions.
Journal ArticleDOI

Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: What lies ahead?

TL;DR: How climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly is explored, and what ramifications changes in these interactions may have on the composition and function of ecosystems are discussed.
References
More filters
Journal ArticleDOI

Nitrogen cycles: past, present, and future

TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Journal ArticleDOI

Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

TL;DR: In this paper, the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances were compared, and it was shown that N 2O emission currently is the single most important ozone-destroying emission and is expected to remain the largest throughout the 21st century.
Journal ArticleDOI

Cell biology and molecular basis of denitrification.

TL;DR: Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1.
Journal Article

Nitrous oxide (N_2O) : the dominanat ozone-depleting substance emitted in the 21st century

A. R. Ravishankara
- 01 Jan 2009 - 
TL;DR: Nitrous oxide emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century, and N2O is unregulated by the Montreal Protocol, which would enhance the recovery of the ozone layer from its depleted state and reduce the anthropogenic forcing of the climate system.
Journal ArticleDOI

Significant Acidification in Major Chinese Croplands

TL;DR: A meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production is presented, likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.
Related Papers (5)