scispace - formally typeset
Journal ArticleDOI

Role of Histone H3 Lysine 9 Methylation in Epigenetic Control of Heterochromatin Assembly

TLDR
In vivo evidence is provided that lysine 9 of histone H3 (H3 Lys9) is preferentially methylated by the Clr4 protein at heterochromatin-associated regions in fission yeast, defining a conserved pathway wherein sequential histone modifications establish a “histone code” essential for the epigenetic inheritance of heterochROMatin assembly.
Abstract
The assembly of higher order chromatin structures has been linked to the covalent modifications of histone tails. We provide in vivo evidence that lysine 9 of histone H3 (H3 Lys9) is preferentially methylated by the Clr4 protein at heterochromatin-associated regions in fission yeast. Both the conserved chromo- and SET domains of Clr4 are required for H3 Lys9 methylation in vivo. Localization of Swi6, a homolog of Drosophila HP1, to heterochomatic regions is dependent on H3 Lys9 methylation. Moreover, an H3-specific deacetylase Clr3 and a beta-propeller domain protein Rik1 are required for H3 Lys9 methylation by Clr4 and Swi6 localization. These data define a conserved pathway wherein sequential histone modifications establish a "histone code" essential for the epigenetic inheritance of heterochromatin assembly.

read more

Citations
More filters
Journal ArticleDOI

Translating the Histone Code

TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Journal ArticleDOI

DNA methylation patterns and epigenetic memory

TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Journal ArticleDOI

The fundamental role of epigenetic events in cancer

TL;DR: This review discusses patterns of DNA methylation and chromatin structure in neoplasia and the molecular alterations that might cause them and/or underlie altered gene expression in cancer.
Journal ArticleDOI

Gene Silencing in Cancer in Association with Promoter Hypermethylation

TL;DR: The mechanisms of gene silencing in cancer and clinical applications of this phenomenon are reviewed, especially tumor-suppressor genes.
PatentDOI

Histone demethylation mediated by the nuclear amine oxidase homolog lsd1

Yang Shi, +1 more
- 16 Dec 2005 - 
TL;DR: In this paper, the authors identify a histone demethylase conserved from S. pombe to human and reveal dynamic regulation of histone methylation by both histonemethylases and demethylases.
References
More filters
Journal ArticleDOI

The language of covalent histone modifications.

TL;DR: It is proposed that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.
Journal ArticleDOI

Regulation of chromatin structure by site-specific histone H3 methyltransferases

TL;DR: A functional interdependence of site-specific H3 tail modifications is revealed and a dynamic mechanism for the regulation of higher-order chromatin is suggested.
Journal ArticleDOI

Structure and ligand of a histone acetyltransferase bromodomain

TL;DR: The solution structure of the bromodomain of the HAT co-activator P/CAF (p300/CBP-associated factor) reveals an unusual left-handed up-and-down four-helix bundle, and it is shown by a combination of structural and site-directed mutagenesis studies that bromidomains can interact specifically with acetylated lysine, making them the first known protein modules to do so.
Journal ArticleDOI

Histone acetylation and an epigenetic code

TL;DR: Recent evidence raises the interesting possibility that an acetylation-based code may operate through both mitosis and meiosis, providing a possible mechanism for germ-line transmission of epigenetic changes.
Journal ArticleDOI

Transcriptional silencing in yeast is associated with reduced nucleosome acetylation

TL;DR: The hypothesis that silencing in yeast results from heterochromatin formation is fortified and it is argued that the silencing proteins participate in this formation.
Related Papers (5)