scispace - formally typeset
Open AccessJournal ArticleDOI

Roles of α­synuclein in gastrointestinal microbiome dysbiosis­related Parkinson's disease progression (Review).

Reads0
Chats0
TLDR
In this article, the abnormal accumulation of α-synuclein (α-syn) in the intestine caused by changes to the gastrointestinal microbiome (GM) caused misfolding and abnormal aggregation of α−syn in the intestines, leading to the formation of eosinophilic Lewis bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons.
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle‑aged and elderly populations. Several studies have confirmed that the microbiota‑gut‑brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α‑synuclein (α‑syn) in the intestine. Abnormal α‑syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α‑syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α‑syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α‑syn in the intestine caused by the GM changes and the increased levels of α‑syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α‑syn accumulation to relieve the symptoms and progression of PD are described.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Are We What We Eat? Impact of Diet on the Gut–Brain Axis in Parkinson’s Disease

TL;DR: The hypothesis that Parkinson’s disease could begin in the gut is supported, with a focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Journal ArticleDOI

Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis

TL;DR: In this article , the authors discuss how the microbiota-gut-brain axis and environmental influences interact with the immune system to promote a pro-inflammatory state that is involved in the initiation and progression of misfolded α-synuclein proteins and the beginning of the early non-motor symptoms of Parkinson's disease.
Journal ArticleDOI

Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson’s Disease

TL;DR: In this paper , the effects of probiotic Bifidobacterium breve CCFM1067, administered for 5 weeks in a Parkinson's disease (PD) mouse model, were examined.
Journal ArticleDOI

Bacillus amyloliquifaciens-Supplemented Camel Milk Suppresses Neuroinflammation of Autoimmune Encephalomyelitis in a Mouse Model by Regulating Inflammatory Markers

TL;DR: In this paper , Bacillus amyloliquefaciens-supplemented camel milk (BASY) was used to assess its preventive effect on MS symptoms in a myelin oligodendrocyte glycoprotein (MOG)-immunized C57BL6J mice model.
Journal ArticleDOI

METTL14 is decreased and regulates m6A modification of α‐synuclein in Parkinson's disease

TL;DR: In this article , the role of m6A modification and its underlying mechanism in Parkinson's disease was investigated and the potential of METTL14 as a novel diagnostic biomarker for PD was revealed.
References
More filters
Journal ArticleDOI

Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms

TL;DR: The potential importance of gut to brain signalling in PD is highlighted with particular focus on the role of the microbiota as major player in this communication.
Journal ArticleDOI

Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease

TL;DR: It is shown that this drug, which attenuates the mitochondrial pyruvate carrier, blocks neurodegeneration in several different cellular and animal models of PD, and changes in metabolic signaling resulting from targeting MPC were neuroprotective and anti-inflammatory in several PD models, suggesting that MPC may be a useful therapeutic target in PD.
Journal ArticleDOI

Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases

TL;DR: An overview of widely used and recently described probiotics, their impact on the human’s gut microflora as a preventative treatment of disease, human/animal models being used to help show efficacy, and the potential use of probiotics in gastrointestinal diseases associated with antibiotic administration are provided.
Journal ArticleDOI

Semi-quantitative analysis of α-synuclein in subcellular pools of rat brain neurons: An immunogold electron microscopic study using a C-terminal specific monoclonal antibody

TL;DR: Immunogold electron microscopy with a newly produced 3D5 monoclonal antibody recognizing the C-terminal 115-121 amino acids of alpha-Syn was used to examine its subcellular localization in rat brain neurons and showed that alpha-synuclein-positive gold particles were unevenly distributed in axons, presynaptic terminals, cytoplasm and nucleus in the neuron.
Related Papers (5)