scispace - formally typeset
Open AccessJournal ArticleDOI

Roles of α­synuclein in gastrointestinal microbiome dysbiosis­related Parkinson's disease progression (Review).

Reads0
Chats0
TLDR
In this article, the abnormal accumulation of α-synuclein (α-syn) in the intestine caused by changes to the gastrointestinal microbiome (GM) caused misfolding and abnormal aggregation of α−syn in the intestines, leading to the formation of eosinophilic Lewis bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons.
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle‑aged and elderly populations. Several studies have confirmed that the microbiota‑gut‑brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α‑synuclein (α‑syn) in the intestine. Abnormal α‑syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α‑syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α‑syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α‑syn in the intestine caused by the GM changes and the increased levels of α‑syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α‑syn accumulation to relieve the symptoms and progression of PD are described.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Are We What We Eat? Impact of Diet on the Gut–Brain Axis in Parkinson’s Disease

TL;DR: The hypothesis that Parkinson’s disease could begin in the gut is supported, with a focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Journal ArticleDOI

Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis

TL;DR: In this article , the authors discuss how the microbiota-gut-brain axis and environmental influences interact with the immune system to promote a pro-inflammatory state that is involved in the initiation and progression of misfolded α-synuclein proteins and the beginning of the early non-motor symptoms of Parkinson's disease.
Journal ArticleDOI

Neuroprotective Effects of Bifidobacterium breve CCFM1067 in MPTP-Induced Mouse Models of Parkinson’s Disease

TL;DR: In this paper , the effects of probiotic Bifidobacterium breve CCFM1067, administered for 5 weeks in a Parkinson's disease (PD) mouse model, were examined.
Journal ArticleDOI

Bacillus amyloliquifaciens-Supplemented Camel Milk Suppresses Neuroinflammation of Autoimmune Encephalomyelitis in a Mouse Model by Regulating Inflammatory Markers

TL;DR: In this paper , Bacillus amyloliquefaciens-supplemented camel milk (BASY) was used to assess its preventive effect on MS symptoms in a myelin oligodendrocyte glycoprotein (MOG)-immunized C57BL6J mice model.
Journal ArticleDOI

METTL14 is decreased and regulates m6A modification of α‐synuclein in Parkinson's disease

TL;DR: In this article , the role of m6A modification and its underlying mechanism in Parkinson's disease was investigated and the potential of METTL14 as a novel diagnostic biomarker for PD was revealed.
References
More filters
Journal ArticleDOI

Location-specific cell identity rather than exposure to GI microbiota defines many innate immune signalling cascades in the gut epithelium.

TL;DR: It is concluded that the epithelial innate immune barrier follows a specific pattern per GI segment and the majority of the expression patterns and the function of TLR4 is encoded in the tissue-resident stem cells and determined primarily during development.
Journal ArticleDOI

Antibodies against alpha-synuclein: tools and therapies.

TL;DR: A review of different α‐syn specific antibodies that provide their usefulness in tackling synucleinopathies and found conformation specific antibody‐based approaches to be promising as therapeutic strategies.
Journal ArticleDOI

Genetic polymorphisms as determinants of pesticide toxicity: Recent advances

TL;DR: In this paper, the influence of genetic polymorphisms on pesticides-induced oxidative damage was reviewed and the susceptibility to exposure can be evaluated by studying the most common polymorphisms of genes involved in the metabolism of organophosphorus compounds (cytochrome P450, glutathione transferase, acetyltransferases or paraoxonase 1).
Journal ArticleDOI

The Gut-Brain Axis: Two Ways Signaling in Parkinson’s Disease

TL;DR: Wang et al. as discussed by the authors summarized how the alterations in gut microbiota and ENS inflammation are associated with Parkinson's disease and discussed the evidence supporting the causative role played by gutassociated dysbiosis and microbial byproducts, in the onset of PD.
Related Papers (5)