scispace - formally typeset
Open AccessJournal ArticleDOI

Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction

Reads0
Chats0
TLDR
Zhu et al. as discussed by the authors investigated the effect of antimony alloying on bismuth tellurides through a series of polycrystalline solid solutions of Bi2-xSbxTe3, where x varies between 1.4 and 1.8.
Abstract
The abundance of low-temperature waste heat produced by industry and automobile exhaust necessitates the development of power generation with thermoelectric (TE) materials. Commercially available bismuth telluride-based alloys are generally used near room temperature. Materials that are composed of p-type bismuth telluride, which are suitable for low-temperature power generation (near 380 K), were successfully obtained through Sb-alloying, which suppresses detrimental intrinsic conduction at elevated temperatures by increasing hole concentrations and material band gaps. Furthermore, hot deformation (HD)-induced multi-scale microstructures were successfully realized in the high-performance p-type TE materials. Enhanced textures and donor-like effects all contributed to improved electrical transport properties. Multiple phonon scattering centers, including local nanostructures induced by dynamic recrystallization and high-density lattice defects, significantly reduced the lattice thermal conductivity. These combined effects resulted in observable improvement of ZT over the entire temperature range, with all TE parameters measured along the in-plane direction. The maximum ZT of 1.3 for the hot-deformed Bi0.3Sb1.7Te3 alloy was reached at 380 K, whereas the average ZTav of 1.18 was found in the range of 300–480 K, indicating potential for application in low-temperature TE power generation. Thermoelectric materials, which convert temperature differences and electric voltage into each other, serve in refrigeration or power generation applications. Currently, bismuth telluride (Bi2Te3) and its alloys are the most widely used thermoelectric materials. Tie-Jun Zhu, Xin-Bing Zhao and co-workers from Zhejiang University, China, have now investigated the effect of antimony (Sb) alloying on bismuth tellurides through a series of polycrystalline solid solutions of Bi2-xSbxTe3—where x varies between 1.4 and 1.8—prepared by hot deformation. Systematic tuning of the alloy composition showed that higher antimony content raised the material's optimal conversion temperature by repressing undesirable conduction. This effect arises from an increase in both the hole concentration and the band gap in the material. For a composition where x is 1.7, the alloy showed optimal performances at 380 kelvin—a suitable temperature for low-temperature power generation from the waste heat generated by industry or vehicles. The p-type bismuth telluride-based polycrystalline materials suiting for low-temperature power generations (near 380 K) have been obtained through Sb-alloying and HD, which suppresses the detrimental effect of intrinsic conduction at elevated temperature via increasing the hole concentration and band gap. The hot-deformed Bi0.3Sb1.7Te3 alloy, not usual composition Bi0.5Sb1.5Te3, shows a maximum ZT of 1.3 at 380 K, indicating a bright application potential in low-temperature power generations.

read more

Citations
More filters
Journal ArticleDOI

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics

TL;DR: A dramatic improvement of efficiency is shown in bismuth telluride samples by quickly squeezing out excess liquid during compaction, which presents an attractive path forward for thermoelectrics.
Journal ArticleDOI

Compromise and Synergy in High-Efficiency Thermoelectric Materials.

TL;DR: Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance, including band convergence, "phonon-glass electron-crystal", multiscale phonon scattering, resonant states, anharmonicity, etc.
Journal ArticleDOI

Recent development and application of thermoelectric generator and cooler

TL;DR: In this article, the basic concepts of the thermoelectric and discusses its recent material researches about the figure of merit are discussed, and the recent applications of the thermal generator, including the structure optimization, low temperature recovery, the heat resource and its application area.
Journal ArticleDOI

Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3

TL;DR: High average ZT is obtained by synergistically optimized electrical- and thermal-transport properties via carrier concentration tuning, band structure engineering and hierarchical architecturing, and highlights a realistic prospect of wide applications of thermoelectrics.
Journal ArticleDOI

High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting

TL;DR: In this article, the intrinsic atomic disorders in half-Heusler (HH) compounds are discussed and the outlook for future research directions of HH thermoelectric materials is also discussed.
References
More filters
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Journal ArticleDOI

New Directions for Low-Dimensional Thermoelectric Materials**

TL;DR: In this article, the ability to achieve a simultaneous increase in the power factor and a decrease in the thermal conductivity of the same nanocomposite sample and for transport in the same direction is discussed.
Journal ArticleDOI

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States

TL;DR: A successful implementation through the use of the thallium impurity levels in lead telluride (PbTe) is reported, which results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin.
Journal ArticleDOI

Convergence of electronic bands for high performance bulk thermoelectrics

TL;DR: It is demonstrated that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition, leading to an extraordinary zT value of 1.8 at about 850 kelvin.
Related Papers (5)