scispace - formally typeset
Open AccessJournal ArticleDOI

SIFT: predicting amino acid changes that affect protein function

Pauline C. Ng, +1 more
- 01 Jul 2003 - 
- Vol. 31, Iss: 13, pp 3812-3814
TLDR
SIFT is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study and can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms.
Abstract
Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

read more

Citations
More filters
Journal ArticleDOI

A beginners guide to SNP calling from high-throughput DNA-sequencing data

TL;DR: This work reviews the essential building blocks for a pipeline that calls SNPs from raw HTS data and employs several alignment programs and SNP calling routines for highlighting the fact that the choice of the tools significantly affects the final results.
Journal ArticleDOI

Analyzing Effects of Naturally Occurring Missense Mutations

TL;DR: The paper provides several examples of the application of 3D structure-based methods to model the effects of protein stability and protein-protein interactions caused by missense mutations as well.
Journal ArticleDOI

Towards Precision Medicine: Advances in Computational Approaches for the Analysis of Human Variants

TL;DR: A detailed comparison of current human variant resources, including HGMD, OMIM, ClinVar, and UniProt/Swiss-Prot are provided, followed by an overview of the computational methods and techniques used to leverage the available data to predict novel deleterious variants.
Journal ArticleDOI

Fast implementation of real-time fruit detection in apple orchards using deep learning

TL;DR: The experimental results show that LedNet can perform real-time apple detection in orchards robustly and efficiently.
References
More filters
Journal ArticleDOI

Database resources of the National Center for Biotechnology Information

TL;DR: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI’s website.
Journal ArticleDOI

dbSNP: the NCBI database of genetic variation

TL;DR: The dbSNP database is a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, and is integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data.
Journal ArticleDOI

The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999.

TL;DR: The Human Proteomics Initiative (HPI), a major project to annotate all known human sequences according to the quality standards of SWISS-PROT, is described.
Journal ArticleDOI

Predicting Deleterious Amino Acid Substitutions

TL;DR: A tool that uses sequence homology to predict whether a substitution affects protein function is constructed, which may be used to identify plausible disease candidates among the SNPs that cause missense substitutions.
Journal ArticleDOI

Human non‐synonymous SNPs: server and survey

TL;DR: A World Wide Web server is presented to predict the effect of an nsSNP on protein structure and function and the dependence of selective pressure on the structural and functional properties of proteins is studied.
Related Papers (5)