scispace - formally typeset
Open AccessJournal ArticleDOI

SIFT: predicting amino acid changes that affect protein function

Pauline C. Ng, +1 more
- 01 Jul 2003 - 
- Vol. 31, Iss: 13, pp 3812-3814
TLDR
SIFT is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study and can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms.
Abstract
Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

read more

Citations
More filters
Book ChapterDOI

Scale Aggregation Network for Accurate and Efficient Crowd Counting

TL;DR: A novel training loss, combining of Euclidean loss and local pattern consistency loss is proposed, which improves the performance of the model in the authors' experiments and achieves superior performance to state-of-the-art methods while with much less parameters.
Journal ArticleDOI

PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations.

TL;DR: This study constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated prediction tools, and returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools.
Journal ArticleDOI

M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity

TL;DR: M-CAP is developed, a clinical pathogenicity classifier that outperforms existing methods at all thresholds and correctly dismisses 60% of rare, missense variants of uncertain significance in a typical genome at 95% sensitivity.
Journal ArticleDOI

A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING

TL;DR: The use of TILLING (targeting induced local lesions in genomes), a reverse genetic, nontransgenic method, to improve a quality trait in a polyploid crop plant shows potential as a tool for crop improvement.
Journal ArticleDOI

Functional annotations improve the predictive score of human disease-related mutations in proteins

TL;DR: SNPs&GO is an accurate method that, starting from a protein sequence, can predict whether a mutation is disease related or not by exploiting the protein functional annotation, and outperforms other available predictive methods.
References
More filters
Journal ArticleDOI

Database resources of the National Center for Biotechnology Information

TL;DR: In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI’s website.
Journal ArticleDOI

dbSNP: the NCBI database of genetic variation

TL;DR: The dbSNP database is a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, and is integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data.
Journal ArticleDOI

The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999.

TL;DR: The Human Proteomics Initiative (HPI), a major project to annotate all known human sequences according to the quality standards of SWISS-PROT, is described.
Journal ArticleDOI

Predicting Deleterious Amino Acid Substitutions

TL;DR: A tool that uses sequence homology to predict whether a substitution affects protein function is constructed, which may be used to identify plausible disease candidates among the SNPs that cause missense substitutions.
Journal ArticleDOI

Human non‐synonymous SNPs: server and survey

TL;DR: A World Wide Web server is presented to predict the effect of an nsSNP on protein structure and function and the dependence of selective pressure on the structural and functional properties of proteins is studied.
Related Papers (5)