scispace - formally typeset
Journal ArticleDOI

Soft biological materials and their impact on cell function

Ilya Levental, +2 more
- 14 Feb 2007 - 
- Vol. 3, Iss: 3, pp 299-306
Reads0
Chats0
TLDR
Biocompatible synthetic materials already have many applications, but combining chemical compatibility with physiologically appropriate mechanical properties will increase their potential for use both as implants and as substrates for tissue engineering.
Abstract
Most organs and biological tissues are soft viscoelastic materials with elastic moduli ranging from on the order of 100 Pa for the brain to 100 000 Pa for soft cartilage. Biocompatible synthetic materials already have many applications, but combining chemical compatibility with physiologically appropriate mechanical properties will increase their potential for use both as implants and as substrates for tissue engineering. Understanding and controlling mechanical properties, specifically softness, is important for appropriate physiological function in numerous contexts. The mechanical properties of the substrate on which, or within which, cells are placed can have as large an impact as chemical stimuli on cell morphology, differentiation, motility, and commitment to live or die.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Mechanical regulation of cell adhesion.

TL;DR: This work focuses on different aspects of the mechanical regulation of the cellular adhesiveness of integrins.
Journal ArticleDOI

Reprogramming cellular phenotype by soft collagen gels

TL;DR: It is shown that cell-material interactions (soft collagen gels in this case) can induce cellular phenotype and cytoskeleton organization in a remarkably distinct manner compared to a classical synthetic polyacrylamide (PA) hydrogel cell culture model and may contribute in designing new functional biomaterials.
Journal ArticleDOI

The influence of fibrous elastomer structure and porosity on matrix organization.

TL;DR: The results indicate that the scaffold architecture and porosity are important considerations in controlling tissue formation.
Journal ArticleDOI

Review: Bioengineering strategies to probe T cell mechanobiology.

TL;DR: The unique characteristics of T cells and the mounting research that has shown they are mechanosensitive are described and the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation are detailed.
Journal ArticleDOI

Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion.

TL;DR: An electrochemical redox multilayer with tunable stiffness is constructed through the layer-by-layer self-assembly method, resulting reversible change of elastic modulus of the multilayers.
References
More filters
Journal ArticleDOI

Tissue Cells Feel and Respond to the Stiffness of Their Substrate

TL;DR: An understanding of how tissue cells—including fibroblasts, myocytes, neurons, and other cell types—sense matrix stiffness is just emerging with quantitative studies of cells adhering to gels with which elasticity can be tuned to approximate that of tissues.
Journal ArticleDOI

Tensional homeostasis and the malignant phenotype.

TL;DR: It is found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation.
Journal ArticleDOI

Cell locomotion and focal adhesions are regulated by substrate flexibility

TL;DR: The ability of cells to survey the mechanical properties of their surrounding environment is demonstrated and the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process is suggested.
Journal ArticleDOI

Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion

TL;DR: The hypothesis that mechanical factors impact different cell types in fundamentally different ways, and can trigger specific changes similar to those stimulated by soluble ligands, is supported.
Journal ArticleDOI

Local force and geometry sensing regulate cell functions.

TL;DR: Tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms of eukaryotic cells.
Related Papers (5)