scispace - formally typeset
Journal ArticleDOI

Statistics of atomic frequency standards

Reads0
Chats0
TLDR
In this paper, a theoretical analysis of the relationship between the expectation value of the standard deviation of the frequency fluctuations for any finite number of data samples and the infinite time average value of a standard deviation is presented.
Abstract
A theoretical development is presented which results in a relationship between the expectation value of the standard deviation of the frequency fluctuations for any finite number of data samples and the infinite time average value of the standard deviation, which provides an invariant measure of an important quality factor of a frequency standard. A practical and straightforward method of determining the power spectral density of the frequency fluctuations from the variance of the frequency fluctuations, the sampling time, the number of samples taken, and the dependence on system bandwidth is also developed. Additional insight is also given into some of the problems that arise from the presence of "flicker noise" (spectrum proportional to |ω|-1) modulation of the frequency of an oscillator. The theory is applied in classifying the types of noise on the signals of frequency standards made available at NBS, Boulder Laboratories, such as: masers (both H and N15H 3 ), the cesium beam frequency standard employed as the U. S. Frequency Standard, and rubidium gas cells. "Flicker noise" frequency modulation was not observed on the signals of masers for sampling times ranging from 0.1 second to 4 hours. In a comparison between the NBS hydrogen maser and the NBS III cesium beam, uncorrelated random noise was observed on the frequency fluctuations for sampling times extending to 4 hours; the fractional standard deviations of the frequency fluctuations were as low as 5 parts in 1014.

read more

Citations
More filters
Journal ArticleDOI

Dynamically corrected gates suppressing spatiotemporal error correlations as measured by randomized benchmarking

TL;DR: In this article, the authors use trapped ions to demonstrate that the use of dynamically corrected gates (DCGs), generally considered for the reduction of error magnitudes, can also suppress error correlations in space and time throughout quantum circuits.
Journal ArticleDOI

Coherent X-ray-optical control of nuclear excitons.

TL;DR: In this paper, a tunable phase between two X-ray pulses is used to switch the nuclear exciton dynamics between coherent enhanced excitation and coherent enhanced emission, and a temporal stability of the phase control on the few-zeptosecond timescale is demonstrated.
Journal ArticleDOI

Application of Near-Space Passive Radar for Homeland Security

TL;DR: It is shown that the use of cost effective near-space platforms can provide the solutions that were previously thought to be out of reach to remote sensing and government customers.
Journal Article

Stochastic modelling and analysis of IMU sensor errors

TL;DR: In this article, the performance of a GPS/INS integration system is greatly determined by the ability of stand-alone inertial sensors to determine position and attitude within GPS outage due to sensor errors.

Using allan variance to determine the calibration model of inertial sensors for gps/ins integration

TL;DR: In this article, a unified calibration model in the form of differential equation for multiple stochastic errors is derived for inertial sensors and the power spectral density (PSD) function is determined.
References
More filters
Journal ArticleDOI

An Introduction to Fourier Analysis and Generalized Functions.

TL;DR: The theory of generalised functions and their Fourier transforms is discussed in this paper. But the analysis of Fourier transform is limited to the case of generalized functions, and it is not suitable for generalised function analysis.
Journal ArticleDOI

Some aspects of the theory and measurement of frequency fluctuations in frequency standards

TL;DR: In this article, the effects of finite observation time on the frequency and phase stability of a servo-controlled oscillator with respect to a given quartz oscillator and an atomic reference are analyzed.
Journal ArticleDOI

Atomic timekeeping and the statistics of precision signal generators

TL;DR: In this paper, a detailed analysis of the calibration procedure showed that the third finite difference of the phase is closely related to the clock errors and that quartz crystal oscillators exhibit a "flicker" or |ω|-1type of noise modulating the frequency of the oscillator.

Atomic timekeeping and the statistics of precision signal generators

TL;DR: The method of finite differences of the phase is shown to be a powerful means of classifying the statistical fluctuations of thephase and frequency for signal generators in general and by employing finite differences it is possible to avoid divergences normally associated with flicker noise spectra.
Related Papers (5)