scispace - formally typeset
Journal ArticleDOI

Statistics of atomic frequency standards

TLDR
In this paper, a theoretical analysis of the relationship between the expectation value of the standard deviation of the frequency fluctuations for any finite number of data samples and the infinite time average value of a standard deviation is presented.
Abstract
A theoretical development is presented which results in a relationship between the expectation value of the standard deviation of the frequency fluctuations for any finite number of data samples and the infinite time average value of the standard deviation, which provides an invariant measure of an important quality factor of a frequency standard. A practical and straightforward method of determining the power spectral density of the frequency fluctuations from the variance of the frequency fluctuations, the sampling time, the number of samples taken, and the dependence on system bandwidth is also developed. Additional insight is also given into some of the problems that arise from the presence of "flicker noise" (spectrum proportional to |ω|-1) modulation of the frequency of an oscillator. The theory is applied in classifying the types of noise on the signals of frequency standards made available at NBS, Boulder Laboratories, such as: masers (both H and N15H 3 ), the cesium beam frequency standard employed as the U. S. Frequency Standard, and rubidium gas cells. "Flicker noise" frequency modulation was not observed on the signals of masers for sampling times ranging from 0.1 second to 4 hours. In a comparison between the NBS hydrogen maser and the NBS III cesium beam, uncorrelated random noise was observed on the frequency fluctuations for sampling times extending to 4 hours; the fractional standard deviations of the frequency fluctuations were as low as 5 parts in 1014.

read more

Citations
More filters
Journal ArticleDOI

Frequency stabilization of a 0633-µm He-Ne longitudinal Zeeman laser

TL;DR: A new method of stabilizing the output frequency of a He-Ne laser in a longitudinal magnetic field has been developed, obtaining a frequency stability of <1 MHz for an averaging time of 1 sec and a long term frequency reproducibility of ~ +/-1 MHz.
Journal ArticleDOI

Thermal noise in optical cavities revisited

TL;DR: In this paper, the authors correct the analytical estimate for the spacer contribution given by Numata et al. using Levin's formulation of the fluctuation-dissipation theorem.
Journal ArticleDOI

Cavity optomechanics on a microfluidic resonator with water and viscous liquids

TL;DR: Kim et al. as mentioned in this paper used a tapered optical fibre to couple light evanescently in the perimeter of the capillary and thus excite optical whispering gallery modes, which in turn modulated the light at a particular frequency.
Journal ArticleDOI

Precision gravimetry with atomic sensors

TL;DR: In this paper, the authors review the applications of atom interferometry to gravity measurements, with a special emphasis on the potential impact of these techniques on applied science fields, and present a review of the potential applications of these methods in the field of particle physics.
Journal ArticleDOI

Optimization of heterodyne observations using Allan variance measurements

TL;DR: In this paper, a simple mathematical treatment of the Allan variance for radio-astronomical observations is presented, and a simple rule of the thumb for an estimate of the optimum timing for the observations is found.
References
More filters
Journal ArticleDOI

An Introduction to Fourier Analysis and Generalized Functions.

TL;DR: The theory of generalised functions and their Fourier transforms is discussed in this paper. But the analysis of Fourier transform is limited to the case of generalized functions, and it is not suitable for generalised function analysis.
Journal ArticleDOI

Some aspects of the theory and measurement of frequency fluctuations in frequency standards

TL;DR: In this article, the effects of finite observation time on the frequency and phase stability of a servo-controlled oscillator with respect to a given quartz oscillator and an atomic reference are analyzed.
Journal ArticleDOI

Atomic timekeeping and the statistics of precision signal generators

TL;DR: In this paper, a detailed analysis of the calibration procedure showed that the third finite difference of the phase is closely related to the clock errors and that quartz crystal oscillators exhibit a "flicker" or |ω|-1type of noise modulating the frequency of the oscillator.

Atomic timekeeping and the statistics of precision signal generators

TL;DR: The method of finite differences of the phase is shown to be a powerful means of classifying the statistical fluctuations of thephase and frequency for signal generators in general and by employing finite differences it is possible to avoid divergences normally associated with flicker noise spectra.
Related Papers (5)