scispace - formally typeset
Open AccessJournal ArticleDOI

SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers

TLDR
The current capabilities of the codes, along with some of the algorithms and heuristics used to achieve efficiency and robustness, are described.
Abstract
SUNDIALS is a suite of advanced computational codes for solving large-scale problems that can be modeled as a system of nonlinear algebraic equations, or as initial-value problems in ordinary differential or differential-algebraic equations. The basic versions of these codes are called KINSOL, CVODE, and IDA, respectively. The codes are written in ANSI standard C and are suitable for either serial or parallel machine environments. Common and notable features of these codes include inexact Newton-Krylov methods for solving large-scale nonlinear systems; linear multistep methods for time-dependent problems; a highly modular structure to allow incorporation of different preconditioning and/or linear solver methods; and clear interfaces allowing for users to provide their own data structures underneath the solvers. We describe the current capabilities of the codes, along with some of the algorithms and heuristics used to achieve efficiency and robustness. We also describe how the codes stem from previous and widely used Fortran 77 solvers, and how the codes have been augmented with forward and adjoint methods for carrying out first-order sensitivity analysis with respect to model parameters or initial conditions.

read more

Citations
More filters
Journal ArticleDOI

CasADi: a software framework for nonlinear optimization and optimal control

TL;DR: This article gives an up-to-date and accessible introduction to the CasADi framework, which has undergone numerous design improvements over the last 7 years.
Posted Content

Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers.

TL;DR: The SUNDIALS suite of nonlinear and DIfferential/ALgebraic equation solvers (SUNDIALs) as mentioned in this paper has been redesigned to better enable the use of application-specific and third-party algebraic solvers and data structures.
Journal ArticleDOI

DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia

TL;DR: DifferentialEquations.jl offers a unified user interface to solve and analyze various forms of differential equations while not sacrificing features or performance, and is an algorithm testing and benchmarking suite which is feature-rich and highly performant.
Journal ArticleDOI

Diversitree : comparative phylogenetic analyses of diversification in R

TL;DR: The R package ‘diversitree’ contains a number of classical and contemporary comparative phylogenetic methods that are suitable for analysing trait evolution and estimating speciation/extinction rates independently.
References
More filters
Journal ArticleDOI

GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems

TL;DR: An iterative method for solving linear systems, which has the property of minimizing at every step the norm of the residual vector over a Krylov subspace.
Book

Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics, 16)

TL;DR: In this paper, Schnabel proposed a modular system of algorithms for unconstrained minimization and nonlinear equations, based on Newton's method for solving one equation in one unknown convergence of sequences of real numbers.
Book

Numerical methods for unconstrained optimization and nonlinear equations

TL;DR: Newton's Method for Nonlinear Equations and Unconstrained Minimization and methods for solving nonlinear least-squares problems with Special Structure.
Book

Solving Ordinary Differential Equations II: Stiff and Differential - Algebraic Problems

TL;DR: In this paper, the authors present the solution of stiff differential equations and differential-algebraic systems (differential equations with constraints) and discuss their application in physics, chemistry, biology, control engineering, electrical network analysis, and computer programs.
Book

Numerical solution of initial-value problems in differential-algebraic equations

TL;DR: In this article, the authors introduce the theory of DAE's and the index Linear constant coefficient, linear time varying, and nonlinear index systems, as well as a general linear multistep method.
Related Papers (5)