scispace - formally typeset
Journal ArticleDOI

Techniques for measuring the thermal conductivity of nanofluids: A review

TLDR
In this paper, a detailed description of a unique thermal conductivity measurement device based on the thermal comparator principle, developed by the present authors, has been described, besides the principle of this measurement device, the constructional details have been elaborated.
Abstract
There has been a rapid progress in research activities concerning nanofluids since a large enhancement in their thermal conductivity has been reported a decade ago. While this extraordinary thermal conductivity of nanofluids deserves scientific investigation, the inconsistency and controversy of the results reported by different groups for identical nanofluids across the world raises fundamental doubts and poses a hindrance in the potential applications of nanofluids. This paper presents a critical review of the several techniques for the measurement of thermal conductivity of nanofluids employed by the researchers. Additionally, a detailed description of a unique thermal conductivity measurement device based on the thermal comparator principle, developed by the present authors has been described. Besides the principle of this measurement device, the constructional details have been elaborated. Finally, some suggestions have been made for improving the reliability of the measurement of thermal conductivity.

read more

Citations
More filters
Journal ArticleDOI

A review on nanofluids: preparation, stability mechanisms, and applications

TL;DR: In this article, the authors summarized the recent progress on the study of nanofluids, such as the preparation methods, the evaluation methods for the stability of nanometrics, and the ways to enhance the stability for nanofl fluids, and presented the broad range of current and future applications in various fields including energy and mechanical and biomedical fields.
Journal ArticleDOI

A review of nanofluid stability properties and characterization in stationary conditions

TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.
Journal ArticleDOI

A review on hybrid nanofluids: Recent research, development and applications

TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Journal ArticleDOI

Review of thermal conductivity in composites: Mechanisms, parameters and theory

TL;DR: In this paper, theoretical and experimental aspects of thermal conductivity in composites, from thermal energy generation to heat transfers, are reviewed, and the fundamental mechanism of thermal conduction, its mathematical aspects, and certain essential parameters to be considered in this study, such as crystallinity, phonon scattering, or filler/matrix interfaces are discussed in detail.
Journal ArticleDOI

Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

TL;DR: Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed.
References
More filters
Book

Conduction of Heat in Solids

TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Book

A Treatise on Electricity and Magnetism

TL;DR: The most influential nineteenth-century scientist for twentieth-century physics, James Clerk Maxwell (1831-1879) demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon: the electromagnetic field as discussed by the authors.
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Related Papers (5)