scispace - formally typeset
Open AccessProceedings ArticleDOI

The Cityscapes Dataset for Semantic Urban Scene Understanding

TLDR
This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Abstract
Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.

read more

Citations
More filters
Journal ArticleDOI

DSEC: A Stereo Event Camera Dataset for Driving Scenarios

TL;DR: The DSEC dataset as mentioned in this paper is a large-scale stereo dataset with event cameras, which contains 53 sequences collected by driving in a variety of illumination conditions and provides ground truth disparity for the development and evaluation of event-based stereo algorithms.
Journal ArticleDOI

Testing machine learning based systems: a systematic mapping

TL;DR: A systematic mapping study about testing techniques for MLSs driven by 33 research questions and investigated multiple aspects of the testing approaches, such as the used/proposed adequacy criteria, the algorithms for test input generation, and the test oracles.
Proceedings ArticleDOI

ViewAL: Active Learning With Viewpoint Entropy for Semantic Segmentation

TL;DR: This work introduces a new viewpoint entropy formulation, which is the basis of a novel active learning strategy for semantic segmentation that exploits viewpoint consistency in multi-view datasets and proposes uncertainty computations on a superpixel level, which exploits inherently localized signal in the segmentation task, directly lowering the annotation costs.
Proceedings ArticleDOI

Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation

TL;DR: Zhang et al. as mentioned in this paper proposed a coarse-to-fine feature adaptation approach to cross-domain object detection, where foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions via multi-layer adversarial learning in the common feature space.
Proceedings ArticleDOI

Recurrent Scene Parsing with Perspective Understanding in the Loop

TL;DR: This work proposes a depth-aware gating module that adaptively selects the pooling field size in a convolutional network architecture according to the object scale so that small details are preserved for distant objects while larger receptive fields are used for those nearby.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)
Trending Questions (1)
What is city scene understanding?

City scene understanding involves pixel-level and instance-level semantic labeling in urban environments. The Cityscapes dataset provides a benchmark for training and testing approaches in this area.