scispace - formally typeset
Open AccessProceedings ArticleDOI

The Cityscapes Dataset for Semantic Urban Scene Understanding

TLDR
This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Abstract
Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.

read more

Citations
More filters
Proceedings Article

Differentiable Learning-to-Normalize via Switchable Normalization

TL;DR: Switchable Normalization (SN), which learns to select different normalizers for different normalization layers of a deep neural network, is proposed, which will help ease the usage and understand the normalization techniques in deep learning.
Proceedings Article

Few-shot Video-to-Video Synthesis

TL;DR: A few-shot vid2vid framework is proposed, which learns to synthesize videos of previously unseen subjects or scenes by leveraging few example images of the target at test time by utilizing a novel network weight generation module utilizing an attention mechanism.
Proceedings ArticleDOI

Semantic Correlation Promoted Shape-Variant Context for Segmentation

TL;DR: This work proposes a novel paired convolution to infer the semantic correlation of the pair and based on that to generate a shape mask, of which the receptive field is controlled by the shape mask that varies with the appearance of input.
Posted Content

Semantic Flow for Fast and Accurate Scene Parsing

TL;DR: This paper proposes a Flow Alignment Module (FAM) to learn Semantic Flow between feature maps of adjacent levels, and broadcast high-level features to high resolution features effectively and efficiently and exhibits superior performance over other real-time methods even on light-weight backbone networks.
Book ChapterDOI

Effective Use of Synthetic Data for Urban Scene Semantic Segmentation

TL;DR: A drastically different way to handle synthetic images that does not require seeing any real images at training time is introduced, which builds on the observation that foreground and background classes are not affected in the same manner by the domain shift, and thus should be treated differently.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)
Trending Questions (1)
What is city scene understanding?

City scene understanding involves pixel-level and instance-level semantic labeling in urban environments. The Cityscapes dataset provides a benchmark for training and testing approaches in this area.