scispace - formally typeset
Journal ArticleDOI

Thermophysical Properties of Imidazolium-Based Ionic Liquids

TLDR
In this paper, the authors present density as a function of temperature, melting temperatures, glass transition temperatures, decomposition temperatures, and heat capacities for 13 ionic liquids, including 1-butyl-3-methylimidazolium trifluoromethanesulfonate.
Abstract
Ionic liquids (ILs) are salts that are liquid at low temperatures, usually including the region around room temperature. They are under intense investigation, especially as replacement solvents for reactions and separations, since they exhibit negligible vapor pressure and would not, therefore, contribute to air pollution. Clearly, basic thermophysical properties are vital for design and evaluation for these applications. We present density as a function of temperature, melting temperatures, glass-transition temperatures, decomposition temperatures, and heat capacities as a function of temperature for a series of 13 of the popular imidazolium-based ILs. The ionic liquids investigated here are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium tris(trifluoromethylsul...

read more

Citations
More filters
Journal ArticleDOI

Density and Viscosity of Binary Mixtures of Thiocyanate Ionic Liquids + Water as a Function of Temperature.

TL;DR: The results indicate that the interactions of thiocyanate ILs with water is not as strong as with alcohols, which is shown by the positive/slightly negative excess molar volumes in these binary systems.
Journal ArticleDOI

Adsorption of imidazolium and pyridinium ionic liquids onto montmorillonite: Characterisation and thermodynamic calculations

TL;DR: In this paper, the first generation ionic liquids (RTILs) were intercalated into the layered structure of a Na-montmorillonite by dispersion in aqueous solutions.
Journal ArticleDOI

Physical Properties of Selected Ionic Liquids for Use as Electrolytes and Other Industrial Applications

TL;DR: The physical properties of selected room temperature ionic liquids (RTILs) were measured using differential scanning calorimetry, du Nouy tensiometry, and rheometry primarily to determine their suitability for use in electrochemical double layer capacitors.
Journal ArticleDOI

From Ionic Liquid to Electrolyte Solution: Dynamics of 1-N-Butyl-3-N-methylimidazolium Tetrafluoroborate/Dichloromethane Mixtures

TL;DR: The spectra indicate that the IL appears to retain its chemical character to extraordinarily high levels of dilution, and behaves as a conventional but strongly associated electrolyte at even higher dilutions.
Journal ArticleDOI

Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations.

TL;DR: Infrared data suggest that ethanolamine preferentially coordinates to the metal center through the amine group in 2 and the hydroxyl group in 5 and in addition, diethanolamine coordinates through the isoporous group in 3A, 3C, and 4 and the Hydroxyl Group in 3B.
References
More filters
Journal ArticleDOI

Ionic Liquids-New "Solutions" for Transition Metal Catalysis.

TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Journal ArticleDOI

Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts

TL;DR: New, hydrophobic ionic liquids with low melting points (<−30 °C to ambient temperature) have been synthesized and investigated, based on 1,3-dialkyl imidazolium cations and hydrophilic anions and thus water-soluble.
Journal ArticleDOI

Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation

TL;DR: A series of hydrophilic and hydrophobic 1-alkyl-3-methylimidazolium room temperature ionic liquids (RTILs) have been prepared and characterized to determine how water content, density, viscosity, surface tension, melting point, and thermal stability are affected by changes in alkyl chain length and anion.
Journal ArticleDOI

Molecular states of water in room temperature ionic liquids

TL;DR: In this paper, the authors used ATR and transmission IR spectroscopy to investigate the state of water in room temperature ionic liquids (RTILs) based on the 1-alkyl-3-methylimidazolium cation with the anions.
Related Papers (5)