scispace - formally typeset
Open AccessJournal ArticleDOI

Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction.

Reads0
Chats0
TLDR
A facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (Fex Coy -ONSs) with a large specific surface area, ultrathin thickness, and, importantly, abundant oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2 O onto nearby Co3+ sites.
Abstract
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low-cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron-cobalt oxide nanosheets (FexCoy-ONSs) with a large specific surface area (up to 261.1 m2 g−1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1-ONS measured at an overpotential of 350 mV reaches up to 54.9 A g−1, while its Tafel slope is 36.8 mV dec−1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1-ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1-ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH− ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.

read more

Citations
More filters
Journal ArticleDOI

Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets

TL;DR: In this paper, ultrathin single-crystalline Fe-doped nickel thiophosphate (NiPS3) nanosheets prepared in large scale by an easy solid-state method were demonstrated to be highly efficient OER electrocatalysts.
Journal ArticleDOI

Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction

TL;DR: In this paper, the authors reported that in-situ direct growth of atomically thick Fe doped Co3O4 holey nanosheets on nickel foam (Fe-Co 3O4 H-NSs/NF) using a simple cyanogel−NaBH4 route, which effectively avoids the tedious post-etch process of nanosaets using plasma, acid, alkali, and so on.
Journal ArticleDOI

Simple and cost effective fabrication of 3D porous core-shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting

TL;DR: In this article, a simple magnetic field-assisted method is used for the in situ growth of Ni nanochain cores with large surface areas, allowing the subsequent vertical growth of few-layered NiFe LDH nanosheets to form densely packed shells.
Journal ArticleDOI

Sulfur‐Modified Oxygen Vacancies in Iron–Cobalt Oxide Nanosheets: Enabling Extremely High Activity of the Oxygen Evolution Reaction to Achieve the Industrial Water Splitting Benchmark

TL;DR: The oxygen vacancies of defective iron-cobalt oxide (FeCoO -Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms, enabling FeCoO x -Vo-S to exhibit much superior OER activity.
References
More filters
Journal ArticleDOI

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

TL;DR: Biesinger et al. as mentioned in this paper proposed a more consistent and effective approach to curve fitting based on a combination of standard spectra from quality reference samples, a survey of appropriate literature databases and/or a compilation of literature references and specific literature references where fitting procedures are available.
Journal ArticleDOI

A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

TL;DR: The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an eg symmetry of surface transition metal cations in an oxide.
Journal ArticleDOI

Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts

TL;DR: In this paper, the oxygen reduction reaction (ORR) active site was characterized by using newly designed graphite (highly oriented pyrolitic graphite) model catalysts with well-defined π conjugation and well-controlled doping of N species.
Journal ArticleDOI

Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions

TL;DR: This study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.
Related Papers (5)