scispace - formally typeset
Open AccessJournal ArticleDOI

Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis

Fang Song, +1 more
- 17 Jul 2014 - 
- Vol. 5, Iss: 1, pp 4477-4477
TLDR
This work demonstrates the promising catalytic activity of single-layered double hydroxides for the oxygen evolution reaction and reports an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures.
Abstract
The oxygen evolution reaction is a key reaction in water splitting. The common approach in the development of oxygen evolution catalysts is to search for catalytic materials with new and optimized chemical compositions and structures. Here we report an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures. Specifically, liquid phase exfoliation is applied to enhance the oxygen evolution activity of layered double hydroxides. The exfoliated single-layer nanosheets exhibit significantly higher oxygen evolution activity than the corresponding bulk layered double hydroxides in alkaline conditions. The nanosheets from nickel iron and nickel cobalt layered double hydroxides outperform a commercial iridium dioxide catalyst in both activity and stability. The exfoliation creates more active sites and improves the electronic conductivity. This work demonstrates the promising catalytic activity of single-layered double hydroxides for the oxygen evolution reaction.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives

TL;DR: This review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting.
Journal ArticleDOI

Recent Advances in Ultrathin Two-Dimensional Nanomaterials

TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Journal ArticleDOI

A review on g-C3N4-based photocatalysts

TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Journal ArticleDOI

Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting

TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
References
More filters
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Powering the planet: Chemical challenges in solar energy utilization

TL;DR: Solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year, and if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user.
Journal ArticleDOI

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

TL;DR: The active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) is determined by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution.
Journal ArticleDOI

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Related Papers (5)