scispace - formally typeset
Open AccessJournal ArticleDOI

Voltage-driven DNA translocations through a nanopore.

TLDR
Current blockade and time distributions for single-stranded DNA polymers during voltage-driven translocations through a single alpha-hemolysin pore imply that, while polymers longer than the pore are translocated at a constant speed, the velocity of shorter polymers increases with decreasing length.
Abstract
We measure current blockade and time distributions for single-stranded DNA polymers during voltage-driven translocations through a single alpha-hemolysin pore. We use these data to determine the velocity of the polymers in the pore. Our measurements imply that, while polymers longer than the pore are translocated at a constant speed, the velocity of shorter polymers increases with decreasing length. This velocity is nonlinear with the applied field. Based on this data, we estimate the effective diffusion coefficient and the energy penalty for extending a molecule into the pore.

read more

Figures
Citations
More filters
Journal ArticleDOI

Solid-state nanopores

TL;DR: The solid-state nanopore proves to be a surprisingly versatile new single-molecule tool for biophysics and biotechnology.
Journal ArticleDOI

Transport phenomena in nanofluidics

TL;DR: In this paper, the authors investigated the transport properties of 50-nm-high 1D nanochannels on a chip and showed that they can be used for the separation and preconcentration of proteins.
Journal ArticleDOI

Artificial Molecular Machines

TL;DR: The latest generations of sophisticated synthetic molecular machine systems in which the controlled motion of subcomponents is used to perform complex tasks are discussed, paving the way to applications and the realization of a new era of “molecular nanotechnology”.
Journal ArticleDOI

Nanopore analytics: sensing of single molecules

TL;DR: In nanopore analytics, individual molecules pass through a single nanopore giving rise to detectable temporary blockades in ionic pore current, which ranges from nucleic acids, peptides, proteins, and biomolecular complexes to organic polymers and small molecules.
References
More filters
Journal ArticleDOI

Characterization of individual polynucleotide molecules using a membrane channel

TL;DR: It is shown that an electric field can drive single-stranded RNA and DNA molecules through a 2.6-nm diameter ion channel in a lipid bilayer membrane, which could in principle provide direct, high-speed detection of the sequence of bases in single molecules of DNA or RNA.
Journal ArticleDOI

Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

TL;DR: The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.
Journal ArticleDOI

Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity.

TL;DR: The purpose of this review is to examine the various effects of low- molecular-weight electrolytes on the associations and interactions of proteins and nucleic acids through general electrostatic effects rather than chemical effects of particular ions.
Journal ArticleDOI

Rapid nanopore discrimination between single polynucleotide molecules.

TL;DR: Because nanopores can rapidly discriminate and characterize unlabeled DNA molecules at low copy number, refinements of the experimental approach demonstrated here could eventually provide a low-cost high-throughput method of analyzing DNA polynucleotides.
Related Papers (5)