scispace - formally typeset
Journal ArticleDOI

Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor

TLDR
In this paper, the effects of the energy level between CH3NH3(= MA)PbI3 and MAPbBr3 and a series of triarylamine polymer derivatives containing fluorene and indenofluorene, which have different highest occupied molecular orbital (HOMO) levels, in terms of the photovoltaic behavior were investigated.
Abstract
Besides the generated photocurrent as a key factor that impacts the efficiency of solar cells, the produced photovoltage and fill factor are also of critical importance. Therefore, understanding and optimization of the open-circuit voltage (Voc) of perovskite solar cells, especially with an architecture consisting of mesoporous (mp)-TiO2/perovskite/hole transporting materials (HTMs), are required to further improve the conversion efficiency. In this work, we study the effects of the energy level between CH3NH3(= MA)PbI3 and MAPbBr3 and a series of triarylamine polymer derivatives containing fluorene and indenofluorene, which have different highest occupied molecular orbital (HOMO) levels, in terms of the photovoltaic behaviour. The voltage output of the device is found to be dependent on the higher energy level of perovskite solar absorbers as well as the HOMO level of the HTMs. The combination of MAPbBr3 and a deep-HOMO HTM leads to a high photovoltage of 1.40 V, with a fill factor of 79% and an energy conversion efficiency of up to 6.7%, which is the highest value reported to date for MAPbBr3 perovskite solar cells.

read more

Citations
More filters
Journal ArticleDOI

Compositional engineering of perovskite materials for high-performance solar cells

TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Journal ArticleDOI

Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts

TL;DR: It is shown that a pair of perovskite cells connected in series can power the electrochemical breakdown of water into hydrogen and oxygen efficiently, and the combination of the two yields a water-splitting photocurrent density and a solar-to-hydrogen efficiency of 12.3%.
Journal ArticleDOI

Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques

TL;DR: This work demonstrates the formation of a hydrated intermediate containing isolated PbI6(4-) octahedra as the first step of the degradation mechanism, suggesting a route toward perovskite solar cells with long device lifetimes and a resistance to humidity.
Journal ArticleDOI

Perovskite solar cells: from materials to devices.

TL;DR: In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovkite solar cells.
Journal ArticleDOI

Organohalide lead perovskites for photovoltaic applications

TL;DR: In this paper, a brief history of perovskite materials for photovoltaic applications is reported, the current state-of-the-art is distilled and the basic working mechanisms have been discussed.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Related Papers (5)