scispace - formally typeset
Journal ArticleDOI

Wave Breaking and Ocean Surface Layer Thermal Response

TLDR
In this paper, the effect of breaking waves on ocean surface temperatures and surface boundary layer deepening is investigated, and the modification of the Mellor-Yamada turbulence closure model by Craig and Banner and others to include surface wave breaking energetics reduces summertime surface temperatures when the surface layer is relatively shallow.
Abstract
The effect of breaking waves on ocean surface temperatures and surface boundary layer deepening is investigated. The modification of the Mellor‐Yamada turbulence closure model by Craig and Banner and others to include surface wave breaking energetics reduces summertime surface temperatures when the surface layer is relatively shallow. The effect of the Charnock constant in the relevant drag coefficient relation is also studied.

read more

Citations
More filters
Book ChapterDOI

Boundary Layer Theory

TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Journal ArticleDOI

Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5

TL;DR: This article presented the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5).
Journal ArticleDOI

The CNRM-CM5.1 global climate model: description and basic evaluation

TL;DR: A new version of the general circulation model CNRM-CM has been developed jointly by CNRMs-GAME (Centre National de Recherches Meteorologiques-Groupe d'etudes de l’Atmosphere Meteorologique) and Cerfacs as discussed by the authors in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5).

NEMO ocean engine

Gurvan Madec
TL;DR: The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a primitive equation model adapted to regional and global ocean circulation problems as discussed by the authors, which is intended to be a flexible tool for studying the ocean and its interactions with the others components of the earth climate system over a wide range of space and time scales.
Journal ArticleDOI

North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states

TL;DR: Simulation characteristics from eighteen global ocean-sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic as discussed by the authors.
References
More filters
Book

Boundary layer theory

TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.
Journal ArticleDOI

Development of a turbulence closure model for geophysical fluid problems

TL;DR: The second-moment turbulent closure hypothesis has been applied to geophysical fluid problems since 1973, when genuine predictive skill in coping with the effects of stratification was demonstrated as discussed by the authors.
Book ChapterDOI

Boundary Layer Theory

TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Journal ArticleDOI

A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers.

TL;DR: In this article, the authors consider simplification based on the observation that the parameters governing the degree of anisotropy are small, and propose a simplification approach for the problem of a planetary boundary layer subject to a diurnally varying surface heat flux or surface temperature.
Journal ArticleDOI

Review of Drag Coefficients over Oceans and Continents

TL;DR: In this article, the effects of wind stress and wind profiles over the ocean reported in the literature over the past 10 years are consistent with Charnock's (1955) relation between aerodynamic roughness length (z0) and friction velocity (u*), viz, z0= αu*2/g, with α= 0.41±0.0144 and g= 9.81 m s−2.
Related Papers (5)