scispace - formally typeset
Search or ask a question
Institution

National Oceanography Centre

FacilitySouthampton, United Kingdom
About: National Oceanography Centre is a facility organization based out in Southampton, United Kingdom. It is known for research contribution in the topics: Climate change & Sea level. The organization has 1175 authors who have published 2684 publications receiving 98364 citations.


Papers
More filters
Journal ArticleDOI
31 Mar 2017-Science
TL;DR: The negative effects of climate change cannot be adequately anticipated or prepared for unless species responses are explicitly included in decision-making and global strategic frameworks, and feedbacks on climate itself are documented.
Abstract: Distributions of Earth’s species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals.

1,917 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the processes by which density flows deposit sediment and proposed a new single classification for the resulting types of deposit, which is consistent with previous models of spatial decelerating (dissipative) dilute flow.
Abstract: Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run-out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain-back for long distances into basinal lows. Deposition of ungraded mud (TE-3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE-2) and finely laminated mud (TE-1) most probably result from floc settling at lower mud concentrations. Grain-size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar-laminated (TD) and ripple cross-laminated (TC) non-cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain-size break beneath the ripple cross-laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar-laminated sand can be deposited by low-amplitude bed waves in dilute flow (TB-1), but it is most likely to be deposited mainly by high-concentration near-bed layers beneath high-density flows (TB-2). More widely spaced planar lamination (TB-3) occurs beneath massive clean sand (TA), and is also formed by high-density turbidity currents. High-density turbidite deposits (TA, TB-2 and TB-3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low-density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain-size texture. Clean-sand debrites can extend for several tens of kilometres before pinching out abruptly. Up-current transitions suggest that clean-sand debris flows sometimes form via transformation from high-density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low-strength cohesive debris flows produce extensive deposits restricted to distal areas. These low-strength debris flows may contain clasts and travel long distances (DM-2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM-1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.

712 citations

Journal ArticleDOI
TL;DR: Replacement of CFP and YFP with these two proteins in reporters of kinase activity, small GTPase activity and transmembrane voltage significantly improves photostability, FRET dynamic range and emission ratio changes and enhances detection of transient biochemical events.
Abstract: A variety of genetically encoded reporters use changes in fluorescence (or Forster) resonance energy transfer (FRET) to report on biochemical processes in living cells. The standard genetically encoded FRET pair consists of CFPs and YFPs, but many CFP-YFP reporters suffer from low FRET dynamic range, phototoxicity from the CFP excitation light and complex photokinetic events such as reversible photobleaching and photoconversion. We engineered two fluorescent proteins, Clover and mRuby2, which are the brightest green and red fluorescent proteins to date and have the highest Forster radius of any ratiometric FRET pair yet described. Replacement of CFP and YFP with these two proteins in reporters of kinase activity, small GTPase activity and transmembrane voltage significantly improves photostability, FRET dynamic range and emission ratio changes. These improvements enhance detection of transient biochemical events such as neuronal action-potential firing and RhoA activation in growth cones.

694 citations

Journal ArticleDOI
TL;DR: Autonomous Underwater Vehicles (AUVs) have a wide range of applications in marine geoscience, and are increasingly being used in the scientific, military, commercial, and policy sectors as mentioned in this paper.

684 citations

Journal ArticleDOI
TL;DR: In this article, a series of sensitivity tests were performed with a z-coordinate, global eddy-permitting (1/4°) ocean/sea-ice model (the ORCA-R025 model configuration developed for the DRAKKAR project) to evaluate the impact of recent state-of-the-art numerical schemes on model solutions.
Abstract: Series of sensitivity tests were performed with a z-coordinate, global eddy-permitting (1/4°) ocean/sea-ice model (the ORCA-R025 model configuration developed for the DRAKKAR project) to carefully evaluate the impact of recent state-of-the-art numerical schemes on model solutions. The combination of an energy–enstrophy conserving (EEN) scheme for momentum advection with a partial step (PS) representation of the bottom topography yields significant improvements in the mean circulation. Well known biases in the representation of western boundary currents, such as in the Atlantic the detachment of the Gulf Stream, the path of the North Atlantic Current, the location of the Confluence, and the strength of the Zapiola Eddy in the south Atlantic, are partly corrected. Similar improvements are found in the Pacific, Indian, and Southern Oceans, and characteristics of the mean flow are generally much closer to observations. Comparisons with other state-of-the-art models show that the ORCA-R025 configuration generally performs better at similar resolution. In addition, the model solution is often comparable to solutions obtained at 1/6 or 1/10° resolution in some aspects concerning mean flow patterns and distribution of eddy kinetic energy. Although the reasons for these improvements are not analyzed in detail in this paper, evidence is shown that the combination of EEN with PS reduces numerical noise near the bottom, which is likely to affect current–topography interactions in a systematic way. We conclude that significant corrections of the mean biases presently seen in general circulation model solutions at eddy-permitting resolution can still be expected from the development of numerical methods, which represent an alternative to increasing resolution.

661 citations


Authors

Showing all 1242 results

NameH-indexPapersCitations
Mark E. Cooper1581463124887
Robert Hall8152528159
Eelco J. Rohling7923720795
Stephen J. Hawkins7835121942
Gurvan Madec7123721512
Andrew P. Roberts7031518281
Nicholas R. Bates6719416696
David W. Sims6519813893
Eric P. Achterberg6332612631
Gavin L. Foster6118212524
Martin R. Palmer6120314166
Dorrik A. V. Stow6023412157
Andrew J. Gooday5922114737
Harry L. Bryden5713711744
Paul J. Worsfold5633816106
Network Information
Related Institutions (5)
Alfred Wegener Institute for Polar and Marine Research
10.7K papers, 499.6K citations

96% related

Scripps Institution of Oceanography
7.8K papers, 487.4K citations

94% related

Woods Hole Oceanographic Institution
18.3K papers, 1.2M citations

94% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

94% related

IFREMER
12.3K papers, 468.8K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
202286
2021193
2020215
2019235
2018183