scispace - formally typeset
Open AccessDOI

NEMO ocean engine

Gurvan Madec
TLDR
The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a primitive equation model adapted to regional and global ocean circulation problems as discussed by the authors, which is intended to be a flexible tool for studying the ocean and its interactions with the others components of the earth climate system over a wide range of space and time scales.
Abstract
Résumé The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) is a primitive equation model adapted to regional and global ocean circulation problems. It is intended to be a flexible tool for studying the ocean and its interactions with the others components of the earth climate system over a wide range of space and time scales. Prognostic variables are the three-dimensional velocity field, a linear or non-linear sea surface height, the temperature and the salinity. In the horizontal direction, the model uses a curvilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional Arakawa C-type grid. Various physical choices are available to describe ocean physics, including TKE, GLS and KPP vertical physics. Within NEMO, the ocean is interfaced with a sea-ice model (LIM v2 and v3), passive tracer and biogeochemical models (TOP) and, via the OASIS coupler, with several atmospheric general circulation models. It also support two-way grid embedding via the AGRIF software. Le moteur océanique de NEMO (Nucleus for European Modelling of the Ocean) est un modèle aux équations primitives de la circulation océanique régionale et globale. Il se veut un outil flexible pour étudier sur un vaste spectre spatiotemporel l’océan et ses interactions avec les autres composantes du système climatique terrestre. Les variables pronostiques sont le champ tridimensionnel de vitesse, une hauteur de la mer linéaire ou non, la temperature et la salinité. La distribution des variables se fait sur une grille C d’Arakawa tridimensionnelle utilisant une coordonnée verticale z à niveaux entiers ou partiels, ou une coordonnée s, ou encore une combinaison des deux. Différents choix sont proposés pour décrire la physique océanique, incluant notamment des physiques verticales TKE, GLS et KPP. A travers l’infrastructure NEMO, l’océan est interfacé avec des modèles de glace de mer, de biogéochimie et de traceurs passifs, et, via le coupleur OASIS, à plusieurs modèles de circulation générale atmosphérique. Il supporte également l’emboı̂tement interactif de maillages via le logiciel AGRIF.

read more

Citations
More filters
Journal ArticleDOI

Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5

TL;DR: This article presented the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5).
Journal ArticleDOI

The CNRM-CM5.1 global climate model: description and basic evaluation

TL;DR: A new version of the general circulation model CNRM-CM has been developed jointly by CNRMs-GAME (Centre National de Recherches Meteorologiques-Groupe d'etudes de l’Atmosphere Meteorologique) and Cerfacs as discussed by the authors in order to contribute to phase 5 of the Coupled Model Intercomparison Project (CMIP5).
Journal ArticleDOI

Antarctic climate change and the environment

TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
References
More filters
Journal ArticleDOI

Development of a turbulence closure model for geophysical fluid problems

TL;DR: The second-moment turbulent closure hypothesis has been applied to geophysical fluid problems since 1973, when genuine predictive skill in coping with the effects of stratification was demonstrated as discussed by the authors.
Journal ArticleDOI

A stable and accurate convective modelling procedure based on quadratic upstream interpolation

TL;DR: In this paper, a convective modeling procedure is presented which avoids the stability problems of central differencing while remaining free of the inaccuracies of numerical diffusion associated with upstream differencings.
Journal ArticleDOI

The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model

TL;DR: In this paper, a split-explicit hydrodynamic kernel for a realistic oceanic model is proposed, which addresses multiple numerical issues associated with mode splitting, and is compatible with a variety of centered and upstream-biased high-order advection algorithms, and helps to mitigate computational cost of expensive physical parameterization of mixing processes and submodels.
Journal ArticleDOI

Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization

TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Related Papers (5)