scispace - formally typeset
Open AccessJournal ArticleDOI

Yeast Carbon Catabolite Repression

Reads0
Chats0
TLDR
It is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions.
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Isoforms of trehalase and invertase of Fusarium oxysporum

TL;DR: A possible role of trehalase and invertase in carbohydrate metabolism of fungal pathogens is discussed, and the occurrence of three forms of intracellular enzyme with the main activity band at 120 kDa and two isoforms of extracellular enzyme is identified.
Journal ArticleDOI

Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.

TL;DR: In this article, the transcriptional regulations of Saccharomyces cerevisiae in response to acetic acid (Aa), furfural (Fur), and the mixture of Aa and Furfural were revealed during mixed glucose and xylose fermentation.
Journal ArticleDOI

Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

TL;DR: This study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution.
Journal ArticleDOI

A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.

TL;DR: In this article, the effect of each element on synthetic GAL promoters has been evaluated and a series of well-controlled synthetic promoters are constructed, which represent an expansion of the classic GAL expression system with an increased dynamic range and a good tolerance of different carbon sources.
Journal ArticleDOI

Cloning and Characterization of an Inulinase Gene From the Marine Yeast Candida membranifaciens subsp. flavinogenie W14-3 and Its Expression in Saccharomyces sp. W0 for Ethanol Production

TL;DR: The results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.
References
More filters
Journal ArticleDOI

Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale

TL;DR: DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions.
Journal ArticleDOI

A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A

TL;DR: A new cellular p300/CBP-associated factor (P/CAF) having intrinsic histone acetylase activity has been identified that competes with E1A, a new adenoviral oncoprotein that induces progression through the cell cycle by binding to the products of the p300 and retinoblastoma gene families.
Journal ArticleDOI

The AMP‐Activated Protein Kinase

TL;DR: The central hypothesis is that the AMP-activated protein kinase cascade appears to be an ancient system which evolved to protect cells against the effects of nutritional or environmental stress, and protects the cell by switching off ATP-consuming pathways and switching on alternative pathways for ATP generation.
Journal ArticleDOI

Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase

TL;DR: A model is proposed to account for the synthesis and regulation of the two forms of inverts: the larger, regulated mRNA contains the initiation codon for the signal sequence required for synthesis of the secreted, glycosylated form of invertase; the smaller, constitutively transcribed mRNA begins within the coding region of the signal sequences, resulting in synthesis ofThe intracellular enzyme.
Journal ArticleDOI

Characterization of the AMP-activated Protein Kinase Kinase from Rat Liver and Identification of Threonine 172 as the Major Site at Which It Phosphorylates AMP-activated Protein Kinase

TL;DR: This finding is consistent with the recent report that the AMP-activated protein kinase kinase can slowly phosphorylate and activate calmodulin-dependentprotein kinase I, at least in vitro.
Related Papers (5)